

Lecture Notes in Computer Science 3694
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Miroslaw Malek Edgar Nett
Neeraj Suri (Eds.)

Service Availability

Second International Service Availability Symposium, ISAS 2005
Berlin, Germany, April 25 – 26, 2005
Revised Selected Papers

13

Volume Editors

Miroslaw Malek
Humboldt-Universität zu Berlin
Institut für Informatik
Rechnerorganisation und Kommunikation
Rudower Chaussee 25, 12489 Berlin, Germany
E-mail: malek@informatik.hu-berlin.de

Edgar Nett
Otto-von-Guericke-Universität Magdeburg
Institut für Verteilte Systeme
Universitätsplatz 2, 39106 Magdeburg, Germany
E-mail: nett@ivs.cs.uni-magdeburg.de

Neeraj Suri
Technical University Darmstadt
Department of Computer Science
Dependable Embedded Systems and Software
Hochschulstr. 10, 64289 Darmstadt, Germany
E-mail: suri@informatik.tu-darmstadt.de

Library of Congress Control Number: 2005932545

CR Subject Classification (1998): C.2, H.4, H.3, I.2.11, D.2, H.5, K.4.4, K.6

ISSN 0302-9743
ISBN-10 3-540-29103-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29103-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11560333 06/3142 5 4 3 2 1 0

General and Program Chairs’ Message

The 2nd International Service Availability Symposium (ISAS 2005) provided a
unique forum for academia and industry researchers who focus not only on devel-
oping next generation solutions but also on standards for today’s market. Given
the pervasive interweaving of computing devices, increasingly it is “services”
rather than “systems” that warrant our attention. As services emerge as the pri-
mary vehicle for information acquisition, processing and delivery, the demands
for dependability become of primary concern. Needless to add, the expectations
from users’ with respect to trust and reliance of such systems will only continue
to grow.

As computers already pervade almost all walks of our lives, significantly in-
creased interest in dependable computing should not be a surprise as the industry
leaders and main computer companies are searching for innovative ways of en-
hancing the dependability of systems that are increasingly more complex and
networked. With the paradigm shift where “everything” may become a service,
it is not an option but an imperative to address the questions of service availabil-
ity. From humble beginnings of dealing with types and formats, later with tasks
and processes, then with objects and components, we have arrived to service and
peer-to-peer computing. Over 8.5 billion processors are produced each year and
98.5% end up in geographically distributed and interconnected embedded sys-
tems. The challenge is to design services and systems that are highly available,
reliable and secure. As the number of 7 × 24 applications continuously increases
this is an ambitious challenge that will have to be met. Service availability can-
not be compromised. It will have to be delivered as the economic and social
impacts of unreliable, incorrect services might range from minor inconveniences
to losses of human lives and unpredictable costs.

This year’s ISAS represented an excellent mix of academic and industrial
contributions as well as participation.

The eight sessions featured truly distinguished academics and industrial lead-
ers as well as some new researchers in the field. We had an outstanding Keynote
Speaker Prof. Hermann Kopetz from TU Vienna who is a pioneer in the field
of dependable real-time computing, actively contributing to the field for almost
30 years. A distinguished panel featuring representatives from academia and in-
dustry, two invited sessions, and regular papers that were subject to a rigorous
review process constituted the overall ISAS program. Each paper was reviewed
by at least three Program Committee members. We would wholeheartedly like
to thank our PC members for their guidance and diligent reviewing. Our thanks
go to Prof. Edgar Nett, Nikola Milanovic and Christine Henze for editing the
proceedings. Nikola and Christine also helped together with Sabine Becker and
Steffen Tschirpke of Humboldt University Berlin, Susan Morgner and Dr. Chris-
tine Titel from Congressa GmbH the organization and we do appreciate it very

VI Preface

much! Last but not least we would like to thank Manfred Reitenspieß who has
been the guiding force behind ISAS and the Service Availability Forum.

I hope that the attendees enjoyed the final program, enjoyed the presenta-
tions, got involved in the discussions, struck up new friendships, and got inspi-
ration for contributions to the next year’s symposium which will be hosted by
Kimmo Raatikainen, University of Helsinki and Francis Tam of Nokia in Helsinki
during May 15–16, 2006.

Miroslaw Malek Neeraj Suri
Humboldt Universität Berlin Technische Universität Darmstadt
Institut für Informatik Institut fur̈ Informatik
malek@informatik.hu-berlin.de suri@informatik.tu-darmstadt.de
ISAS 2005 General Chair ISAS 2005 Program Chair

Table of Contents

TTA Supported Service Availability
Hermann Kopetz . 1

The Value of Conformance Testing and a Look at the SAF Test Project
Bob Spencer . 15

Building Highly Available Application Using SA Forum Cluster:
A Case Study of GGSN Application

Ajay Kamalvanshi, Timo Jokiaho . 25

Using Logical Data Protection and Recovery to Improve Data
Availability

Wei Hu . 39

Contract-Based Web Service Composition Framework with Correctness
Guarantees

Nikola Milanovic . 52

Practical Approach to Specification and Conformance Testing of
Distributed Network Applications

Victor V. Kuliamin, Nickolay V. Pakoulin,
Alexander K. Petrenko . 68

Model-Based Optimization of Enterprise Application and Service
Deployment

András Balogh, Dániel Varró, András Pataricza 84

On Best-Effort and Dependability, Service-Orientation and Panacea
Aad van Moorsel . 99

Are Service-Oriented Architectures the Panacea for a High-Availability
Challenge?

Guido Laures . 102

Modeling User-Perceived Service Availability
Dazhi Wang, Kishor S. Trivedi . 107

Dependable Distributed Computing Using Free Databases
Christof Fetzer, Trevor Jim . 123

VIII Table of Contents

A Compositional Framework for Real-Time Embedded Systems
Insik Shin, Insup Lee . 137

On the Importance of Composability of Ad Hoc Mobile Middleware
and Trust Management

Ovidiu V. Drugan, Ioanna Dionysiou, David E. Bakken,
Thomas P. Plagemann, Carl H. Hauser, Deborah A. Frincke 149

Proof-Based System Engineering Using a Virtual System Model
Martin Biely, Gérard Le Lann, Ulrich Schmid . 164

Evaluation of the Impact of Congestion on Service Availability in
GPRS Infrastructures

Paolo Lollini, Andrea Bondavalli, Felicita Di Giandomenico 180

Characterizing Session Initiation Protocol (SIP) Network Performance
and Reliability

Vijay K. Gurbani, Lalita J. Jagadeesan, Veena B. Mendiratta 196

Author Index . 213

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 1 – 14, 2005.
© Springer-Verlag Berlin Heidelberg 2005

TTA Supported Service Availability

H. Kopetz

Institut für Technische Informatik TU Wien,
A 1040 Wien, Treitlstrasse 3
hk@vmars.tuwien.ac.at

Abstract. The Time-Triggered Architecture (TTA) is a distributed architecture
for high-dependability real-time applications. In this paper the mechanisms that
guarantee a high availability of TTA services are presented. The paper starts
with a deliberation on the fault-hypothesis of the TTA and discusses the parti-
tioning of a TTA system into independent fault-containment regions, their fail-
ure modes and their failure frequencies. In the second part the structure of the
TTA is explained and the mechanisms that handle the specified faults are out-
lined. The role of the TTA-inherent sparse time base for the consistent ordering
of messages and the solution of the simultaneity problem is explained. Finally,
the third part speculates on the vision of a highly integrated TTA-giga-chip that
acts as a self-contained TTA node and could be implemented on a single
silicon die.

1 Introduction

The Time-Triggered Architecture (TTA) [1] is an integrated distributed computer
architecture, designed to provide a continuous timely services with an MBTF of bet-
ter than 109 hours in the presence of component failures, provided that the occur-
rences of component failures are in agreement with the stated fault hypothesis. The
TTA is intended for applications that require utmost availability even in the presence
of a fault in any of its components: examples of such applications are the control of a
nuclear power plant, the flight control system of an airplane or a computer-based
brake control system within an automobile that does not contain a mechanical backup.

Such a high reliability can only be achieved by the provision of redundancy in the
hardware, since the observed component (chip) failure rates are orders of magni-
tudes lower [2] than the desired system reliability. Every redundancy scheme is based
on a number of assumptions--the fault hypothesis--about the types and frequency of
faults that the system is supposed to handle. In case that all fault-handling mecha-
nisms are perfect and cover all scenarios that are listed in the fault-hypothesis, the
probability of system failure is reduced to the assumption coverage[3], i.e., the prob-
ability that the assumptions made in the fault hypothesis are met by reality. The fault
hypothesis of any fault-tolerant system is a critical document in the design process.
The fault hypothesis of the TTA is discussed in more detail in Section two.

One common technique to implement fault-masking by redundancy is called triple-
modular redundancy (TMR). In a TMR system fault-tolerant units (FTUs) are
formed by placing three synchronized deterministic replicas of every critical
component into a new distributed unit--the FTU. An incoming message is distributed

2 H. Kopetz

to all three units of the FTU and the result message (and the internal state) is output-
ted to a voter that makes a majority decision based on at least two identical results. If
one of the components of FTU produces no result or a result that is different from the
result of the other two components, this component is considered to have failed.
TMR structures will only succeed if the redundant components fail independently,
i.e. if there is no correlation between the failures of components that form a fault-
tolerant unit. Correlated failures can occur because of external causes (a single exter-
nal event, e.g., a lightning stroke, causes the failure of more than one component) or
by error propagation, i.e. an erroneous component sends a faulty message to an up to
that instant correctly operating component and thus corrupts the internal state of this
component. The issues of fault isolation and error propagation in the TTA are cov-
ered in Sections three and four.

Finally in Section five and six we speculate about the future hardware implementa-
tion of the TTA. Considering the tremendous advances in the field of semiconductor
technology, which is expected to give us billion-transistor giga chips (system-on-a-
chip: SoC) by the end of this decade, we outline the structure of a generic TTA-
SoC that can be used in many different application domains.

2 Fault Hypothesis of the TTA

In the following paragraphs we discuss the fault hypothesis of the TTA with respect
to hardware faults. We assume that the hardware design and the basic fault-handling
mechanisms are free of design faults.

2.1 Fault-Containment Regions

The first step in the specification of a fault-hypothesis is concerned with the estab-
lishment of a the fault-containment regions (FCR), i.e. the units of failure. An FCR
is a subsystem that is considered to fail independently from any other FCR. If we
must tolerate the physical destruction of a hardware component (e.g., in an accident),
then different FCRs must be in different physical locations, i.e. the computer system
must be distributed. In the TTA we assume that every node of the distributed system
forms an FCR.

2.2 Failure Modes

In the next step we must specify the critical failure modes of FCRs. Any restriction
of the tolerated failure modes must be considered as an additional assumption that
has a negative effect on the assumption coverage. In the optimal case no restriction
of the failure modes are made, i.e. a failing component can manifest an arbitrary
behavior.

We consider a failure mode of an FCR as critical, if it impacts the remaining cor-
rect nodes of the distributed system in such a way that the functionality or the consis-
tency of the distributed computing base among the nodes that are outside the affected
FCR is lost. We focus on a single fault during a fault-recovery interval Δd. After the
recovery interval Δd the architecture has recovered from the consequences of this
fault and can tolerate a further fault (provided enough resources remain operational).

 TTA Supported Service Availability 3

We define a set of nodes as Δd-consistent if Δd time units after the occurrence of
failure all remaining correct nodes have the same view about this failure event.

In the TTA we have identified the following critical failure modes of an FCR that
must be addressed at the level of the architecture:

(i) Crash/Omission (CO) failures
(ii) Babbling idiot failures
(iii) Slightly-off-specification (SOS) failures
(iv) Masquerading failures
(v) Massive transient disturbances

In the analysis of failure mode (i) to (iv) we assume that a fault impacts a single
FCR only. Failure mode (v), special case that affects more than one FCR, is ex-
plained at the end of this Section.

Crash/Omission Failures: A widely accepted fault-model in a distributed system
assumes a fault that manifests itself as either a crash failure of a node or an omission
failure of the communication channel (CO failure). CO failures are the most com-
mon failures in distributed system--close to 99% of the failures are of the CO type[4].
According to this fault model a node either operates correctly or crashes. The com-
munication system either transports a message correctly, produces a detectably cor-
rupted message, or fails to transport a message. Most of the available communication
protocols, such as for example TCP/IP, are designed to detect and, if possible, to
correct CO failures. The consequence of a CO failures is a loss of consistency of the
distributed computing base. In a point-to-point communication system an acknowl-
edgement service is provided to detect CO failures. In multi-cast communication
system, such as the TTA, a membership service can is available to detect and identify
CO failures. Another mechanism for CO failure detection is the acknowledgement
mechanism of the CAN protocol[5].

In a multicast environment it is important to distinguish between an omission fail-
ure at the sender and an omission failure at one of the receivers. If the sender learns
promptly about a local omission failure it can often undo the state-change assumed to
have taken place by rolling back to the state before the send operation. In case of an
omission failure at one of the receivers, such a rollback is not possible.

Prompt CO failure detection and diagnosis at the architecture level is important in
order to inform the application that consistency has been lost, and which unit is re-
sponsible for the loss of consistency. The application can then decide what corrective
action must be taken.

Babbling idiot failures: A babbling idiot failure of an FCR occurs, if the FCR
starts sending untimely messages. In a multicast time-triggered communication topol-
ogy that contains a broadcast channel such a babbling FCR can interfere with the
communication of the correct nodes. If an FCR exhibits permanent babbling-idiot
failures on both channels (this is in principle possible, since both channels are in the
same FCR) any further communication among the correct nodes becomes impossible.
The TTA detects and handles babbling-idiot failures of FCRs by the guardians in the
communication system. The guardian will only open the sending channels during the
a priori known time-interval that has been allocated to a node.

Slightly-off-Specification (SOS) Failures: Slightly-off-specification failures are an
important special case of Byzantine failures. They can occur at the interface between
the analog and the digital world. Assume the situation as depicted in Figure 1. The

4 H. Kopetz

specification requires that every correct node must accept analog input signals if they
are within a specified receive window of a parameter (e.g., timing, frequency, or volt-
age). Every individual node will have a wider actual receive window than the one speci-
fied in order to ensure that even if there are slight variations in manufacturing it can
accept all correct input signals as required by the specification. These actual receive
windows will be slightly different for the individual nodes, as shown in Fig 4. If an
erroneous FCR produces an output signal (in time or value) slightly outside the speci-
fied window, some nodes will correctly receive this signal, while others might fail to
receive this signal. Such a scenario will result in an inconsistent state of the
distributed system.

Parameter (e.g., Time, Voltage)

Receive window of Parameter according to Specification

Node L-F R-B R-F L-B
(all correct, since they all contain the specified receive window!)

SOS Incorrect
Output Signal
 from a node

Actual receive
window of
individual nodes

Fig. 1. Slightly off Specification (SOS) failure

Example: Consider a brake-by-wire system where four receiving nodes are at the
four wheels of a car (L-F: left front, R-B: right back, R-F: right front, L-B: Left back).
In this example an SOS output failure of the “brake master” will cause confusion in the
distributed system. According to this example, the L-Front and the L-Back node will
accept the SOS message, while the R-Back and R-Front node will discard this message.
In a brake-by-wire system, such an inconsistency can become safety relevant.

In the TTA we must address the following three types of SOS failures:

(i) SOS value failure
(ii) SOS coding failures
(iii) SOS send-instant failures.

An SOS value failure occurs, if the signal level of the outgoing message is SOS
faulty. Some receivers may still correctly decode such an SOS faulty signal, while
others may not be able to decode this signal. Since both outgoing channels of an FCR
depend on the same power supply, the probability that SOS value failures on both
channels are correlated.

An SOS coding failure occurs, if the bit stream from the sender is at the border of
the coding specification, e.g., the frequency is SOS faulty. Since both channels are

 TTA Supported Service Availability 5

driven by the same oscillator the probabilities for the occurrence of an SOS coding
failure on both channels are not independent.

An SOS send-instant failure occurs, if the send-instant of a message transmission
(see Section 3.1) is SOS faulty. A message that is SOS send-instant faulty may be
accepted by some nodes and rejected by others. Again, SOS send-instant failures on
the two channels are correlated.

Masquerading Failures: A masquerading failure occurs if an erroneous node
assumes the identity of another node and causes harm to the system. Systems that
rely on names stored in a message to identify the transported message and the in-
formation contained therein are vulnerable to masquerading failures. It opens the
possibility that a single faulty node can masquerade other nodes, without the re-
ceivers having a chance to detect the fault. For example, if a bit in the name of a
message to-be-sent that is stored in the sending node is incorrect, this message
could, after arrival at its destination, overwrite correct messages at correct receiv-
ers. This problem is discussed at some length in the safety-critical SafeBus protocol
[6] p.36: Any protocol that includes a destination memory address in a message is a
space-partitioning problem.

Massive Transient Disturbances: Another important fault class in a distributed
embedded system, particularly in the automotive domain, is concerned with massive
transient disturbances, e.g., those caused by electromagnetic emission (EMI). A
massive transient disturbance can cause the temporary loss of communication
among otherwise correct nodes that reside in different FCRs or cause state-
corruptions within more than one node. Based on available failure data [2] it is
reasonable to assume that the multiple correlated faults produced by a massive tran-
sient disturbance are transient, i.e. that the hardware is not faulted by the massive
transient disturbance. In such a situation the architecture can provide the service of
prompt error detection in order that the nodes may take some local corrective action
until the transient disturbance has disappeared and the communication service and
the consistency of the nodes is reestablished by a fast restart. For example, [7] re-
port that in an automotive environment a temporary loss of communication of up to
50 msec can be tolerated by freezing the actuators in the positions that were taken
before the onset of the transient disturbance. The probability of occurrence of tran-
sient disturbances must be reduced by proper quality engineering, e.g., by shielding
the cables or installing fiber optics instead of copper. In a safety-critical distributed
system massive transient disturbances must be rare events. From the point of view
of the communication system, fast detection of a transient disturbance and fast re-
covery after the transient has disappeared are important.

2.3 Frequency of Faults

The assumptions about the frequency of fault occurrence are depicted in Table 1.
We distinguish between transient failures and permanent failures as well as between
fail-silent failures and Byzantine failures.

6 H. Kopetz

Table 1. Assumed failure rates

Type of Failure Failure Rate Source

permanent fail silent < 100 FIT
(MTTF > 1 000 000 hours)

Field data from the auto-
motive industry[2]

transient fail silent < 100 000 FIT
(MTTF > 1000 hours)

SEUs caused by
neutrons[8]

permanent Byzantine < 2 FIT
(MTTF 50 000 000 hours)

Fault injection
 experiments[4]

transient Byzantine < 2 000 FIT
(MTTF > 50 000 hours)

Fault injection
 experiments[4]

Whereas the data in line one--permanent failures--is derived from extensive field
data, the assumptions of line two, three and four are not as well supported by
experimental data and field evidence. In particular it is very difficult to find a good
estimate for the transient failure rates, because these failure are very dependent upon
the environmental conditions (e.g., geometry of the setup determines the susceptibility
with respect to EMI, geographical position and altitude determines the rate of SEUs
etc..) of the unit under observation. The failure rates of Table 1 are our best estimates
and are used in our reliability models to calculate the service availability of the TTA.

3 Structure of the TTA

The time-triggered architecture (TTA) is a distributed architecture for the implemen-
tation of hard real-time applications. It consists of a set of nodes interconnected by a
TDMA (time-division multiple access) based real-time communication system. The
TTA provides the following services to the application at the architecture level

(i) a consistent distributed computing platform with prompt error detection if con-
sistency is lost by a failure that can be detected at the architecture level.

(ii) a fault-tolerant global sparse time base of known precision at all nodes
(iii) mechanisms for the precise operational specification of the interfaces among the

nodes in the domains of time and value. These interfaces are called “temporal
firewalls”.

(iv) error containment such that arbitrary node failures can be tolerated
(v) mechanisms that support the transparent implementation of fault-tolerance.

In the following section we will discuss two essential characteristics of the TTA, the
TTA view of time and state.

3.1 Global Sparse Time

For most applications, a model of time based on Newtonian physics is adequate. In
this model, real time progresses along a dense timeline, consisting of an infinite set of

 TTA Supported Service Availability 7

instants, from the past to the future. A duration (or interval) is a section of the
timeline, delimited by two instants. A happening that occurs at an instant (i.e., a cut
of the timeline) is called an event. An observation of the state of the world at an
instant is thus an event. The time-stamp of an event is established by assigning the
state of the local clock of the observer to the event immediately after the event oc-
currence. Due to the impossibility of synchronizing clocks perfectly and the dense-
ness property of real time, there is always the possibility of the following sequence
of events occurring: clock in component j ticks, event e occurs, clock in component
k ticks. In such a situation, the single event e is time-stamped by the two clocks j
and k with a difference of one tick. The finite precision of the global time-base and
the digitalization of the time make it impossible in a distributed system to order
events consistently on the basis of their global time-stamps based on a dense time.
This problem is solved by the introduction of a sparse time base in the TTA. In the
sparse-time model the continuum of time is partitioned into an infinite sequence of
alternating durations of activity and silence as shown in Figure 2. The activity inter-
vals form a synchronized system-wide action lattice. From the point of view of
temporal ordering, all events that occur within a duration of activity of the action
lattice are considered to happen at the same time. Events that happen in the distrib-
uted system at different components at the same global clock-tick are thus consid-
ered simultaneous. Events that happen during different durations of activity (at
different points of the action lattice) and are separated by the required interval of
silence (the duration of this silence interval depends among others, on the precision
of the clock synchronization [9]) can be temporally ordered on the basis of their
global timestamps. The architecture must make sure that significant events, such as
the sending of a message, or the observation of the environment, occur only during
an interval of activity of the action lattice. The time-stamps of events that are based
on a sparse time base can be mapped on the set of positive integers. It is then pos-
sible to establish the temporal order of events by integer arithmetic.

 a s a s a Rea l Time

a dur at ion of ac tivit y
s du ra tion o f si lence

Fig. 2. Sparse time base

The timestamps of events that are outside the control of the distributed computer
system (and therefore happen on a dense timeline) must be assigned to an agreed
lattice point of the action lattice by an agreement protocol. Agreement protocols
are also needed to come to a system-wide consistent view of analogue values that
are digitized by more than one analogue-to-digital converter.

8 H. Kopetz

3.2 Distributed State

In abstract system theory, the notion of state is introduced in order to separate the
past from the future [10] p.45:

“The state enables the determination of a future output solely on the basis of the
future input and the state the system is in. In other word, the state enables a “decoup-
ling” of the past from the present and future. The state embodies all past history of a
system. Knowing the state “supplants” knowledge of the past. Apparently, for this
role to be meaningful, the notion of past and future must be relevant for the system
considered.”

Taking this view it follows that the notions of state and time are inseparable. If an
event that updates the state cannot be said to coincide with a well-defined tick of a
global clock on a sparse time-base, then the notion of a system-wide state becomes
diffuse. It is not known whether the state of the system at a given clock tick includes
this event or not. The sparse time-base of the TTA, explained above, makes it possi-
ble to define a system-wide notion of time, which is a prerequisite for an indisputable
borderline between the past and the future, and thus the definition of a system-wide
distributed state. The “interval of silence” on the sparse time base forms a system
wide consistent dividing line between the past and the future and the interval when
the state of the distributed system is defined. Such a consistent view of time and state
is very important if fault tolerance is implemented by replication, where faults are
masked by voting on replicated copies of the state. If there is no global sparse time-
base available, one often recourses to a model of an abstract time that is based on the
order of messages sent and received across the interfaces of a node. If the relation-
ship between the physical time and the abstract time remains unspecified, then this
model is imprecise whenever this relationship is relevant. For example, it may be
difficult to determine in such a model the precise state of a system at an instant of
physical time at which voting on replicated copies of the state must be performed.

3.3 Simple TTA Nodes

A simple node of the TTA is composed of three subsystems: a communication con-
troller to the time-triggered communication system that contains two independent
multicast communication channels, a host computer to perform the application tasks,
and a communication controller to access the process input/output (Figure 3).

At the architecture level there are two operationally fully specified (in time and
value) interfaces between the three subsystems within a node, called communication
network interfaces (CNIs). The CNIs form temporal firewalls that eliminate control
error propagation by design [11]. The communication system transports state mes-
sages from the CNI in the sending node to the CNIs in the other nodes within a clus-
ter of nodes via the replicated communication channels. Since state messages are not
consumed on reading and a new version of a state message overwrites the previous
one, the CNI for a state message can be placed in a dual-ported memory. The data
flow and control flow between a sending host computer in one node and a receiving
host computer in another node is shown in Figure 4. The instants when messages are
fetched from the sender’s CNI and are delivered at the receiver’s CNI are known a
priori and are common knowledge to all communicating partners within the TTA.
These instants establish the temporal specification of the CNIs.

 TTA Supported Service Availability 9

Communication Contoller
Communication Network Interface

Host Co mputer performing
app lication tasks

Communication Network Interface
Process I/O Controller

Replicated Channels

Process I/O Signals

Fig. 3. Internal Structure of a Simple Node of the TTA

Sender
CNI

Memory
CNI

Memory
Receiver

Information Push
Ideal for Sender

Information Pull
Ideal for Receiver

Time-Triggered
Communication System

Clock

Fig. 4. Data flow (full line) and control flow (dashed line) across a temporal firewall interface

4 Multi-criticality Nodes

The Time-Triggered Architecture is an integrated architecture that provides the
framework for the implementation of large embedded systems consisting of diverse
distributed subsystems of differing criticality. We have coined the term Distributed
Application Subsystem (DAS) for such a nearly independent subsystem of a large
embedded system[12]. Consider, for example, an automotive control system: there
are the power-train control system, the airbag system, the multimedia system of the
car, etc., all nearly independent subsystems that interact with each other via a con-
trolled information flow.

We assume that each DAS can be modeled by a set of micro-components (i.e. a
hardware/software unit including operating system, middleware, and the application
software) that communicate by the exchange of state and event messages across a
virtual communication channel of known temporal properties. It must be assured by
the TTA that there are no unintended side effects--neither in the domain of time, nor
in the domain of values-- between different DASs. In order to meet this requirement
we propose a new hardware/software structure for nodes that are implemented on a
single giga-scale TTA SoC (system-on-a-chip).

Figure 5 gives an overview of e proposed structure of a TTA SoC. At a high-level
of presentation, the SoC can be viewed as containing a set of micro-components that

10 H. Kopetz

are interlinked by a time-triggered conflict-free network-on-a-chip (NoC). In order to
arrive at a splittable design, we require that the micro-components operate nearly
autonomously and interact with each other only via well-defined message interfaces.

Fig. 5. Overview of the SoC

Fig. 6. Differing implementation technologies of a micro-component
(a) programmable computer, (b) FPGA, (c) dedicated hardware unit

The NoC must provide to each DAS a deterministic communication channel with a
known bandwidth. A micro-component can be implemented as a programmable com-
puter with its own hardware, operating system and application software (Figure 6 a), as
a FPGA module that implements the intended functionality in programmable hardware
(Figure 6 b) or a dedicated custom made hardware unit (Figure 6 c). However, all the
micro-components of Figure 6 must contain to same interface structure towards the NoC

Application
Software

Middleware

Hardware and
RT Operating

System

Local Interfaces
(e.g. Process I/O)

LIF

FPGA

Local Interfaces
(e.g. Process I/O)

LIF

Dedicated
Hardware

Unit

Local Interface
(e.g. Process I/O

LIF

(a) (b) (c)

Micro-
Computer

Micro-
Computer

FPGA
Component

 HF
Hardware

Unit

Gateway
to

TT Ethernet

Trusted
Network
Authority

Local Interfaces controlled by Micro-components

Standardized LIF Interface

On-Chip Network

 TTA Supported Service Availability 11

to be TTA conformant. In this new structure the need for a node global operating sys-
tem that encapsulates the subsystems of each DAS disappears.

The SoC can be characterized by the following properties[13]:

(i) Strict separation of computation and communication: We follow a computa-
tional model that partitions the behavior of distributed applications into phases of
computation and communication. Computation is performed within the micro-
components and communication among the micro-components is realized by a deter-
ministic time-triggered on-chip network. The computation phase encompasses the
acquisition of information, the processing of information, depositing and retrieving
the information in long-time storage, and outputting the information to the environ-
ment of the SoC. The communication phase covers the transmission and reception of
messages among the micro-components that populate the SoC.

(ii) Abstraction from the internal structure and behavior of a micro-component:
We introduce the concept of a well-specified linking interface (LIF) [14] that de-
scribes the behavior (both in the value domain and the temporal domain) of a micro-
component that is relevant for the user and makes no assumption about the imple-
mentation technology (hardware/software) of a micro-component, provided the tem-
poral constraints are met. We standardize the LIF, not the micro-component behind
the interface. A micro-component can be stand-alone computer, an FPGA block or a
custom hardware unit that operates at its own adjustable frequency that can be differ-
ent from the frequency of the other micro-components (Fig. 6). From the point-of-
view of the user of a micro-component it is sufficient to understand the LIF specifica-
tion including its interface model; knowledge about the internal structure or behavior
of a micro-component is neither required nor recommended, since the implementa-
tion technology which is hidden behind the stable LIF may change as a consequence
of technological developments. The precise and stable LIF specification supports the
reuse of micro-components on different SoCs and within differing application
domains.

 (iii) Introduction of a deterministic time-triggered on-chip network for the inter-
action among micro-components: The on-chip network provides conflict-free com-
munication channels of a priori known temporal properties between the LIFs of the
micro-components. The on-chip network supports two types of communication: the
periodic transmission of state messages and the guaranteed transmission of event
messages. The conflict-free bandwidth allocation can be adapted dynamically to
evolving demands of the particular application. This re-allocation is performed by a
dynamic trusted network authority (TNA) that is hosted in one of the micro-
components.

(iv) Continuous monitoring and control of the power-consumption of the SoC
and the timeliness of the micro-components by the TNA: The trusted network author-
ity (TNA) monitors continuously the power of every micro-component and the global
power-level of the SoC and integrates the dynamic bandwidth allocation, and the
scheduling with dynamic power management of every individual micro-component
in order to save energy. In case a micro-component develops a permanent fault, the
TNA may be able initiate a dynamic reconfiguration and reallocate the software of
the faulty micro-component to a healthy unit.

(v) Openness to the Internet: We assume that a generic embedded system archi-
tecture must support a secure connection to the Internet. The proposed platform
architecture provides potentially two alternatives for an Internet connection: a wire-

12 H. Kopetz

bound connection via TT-Ethernet gateway micro-component and a wire-less connec-
tion via an on-chip sender/transmitter micro-component supporting a standard wire-
less protocol. In addition to being fully compatible to standard Ethernet, TT-Ethernet
supports the deterministic transmission of time-triggered messages. This determinism
is needed if we intend to build fault-tolerant systems that mask complete chip failures
by triple-modular redundancy (TMR).

5 Fault Tolerance

In a safety-critical application an SoC must be considered to form a single fault-
containment region (FCR) that can fail in an arbitrary failure mode. A restricted
failure-mode model requires two independent FCRs (one FCR monitoring the be-
havior of the other FCR) which cannot be housed on the same die because of the
many common mode elements of a single die, such as: power supply, mask, produc-
tion process, physical space. We therefore need a deterministic off-chip communica-
tion channel, such as TT Ethernet with a special guardian in the switch [15] to provide
fault-isolation and error detection in the temporal domain at the architecture level.
Our platform SoC architecture, which is based on the TTA [1], performs error detec-
tion in the time-domain at the level of the SoC-external architecture and error detec-
tion in the value domain by triple-modular redundancy (TMR) .

There is an additional benefit in such an architecture approach if the nodes are
formed by giga-scale SoCs. It is expected that in technologies beyond 90nm feature
size, single-event upsets (SEU) will severely impact field-level product reliability, not
only for embedded memory, but for logic and latches as well [16, 17]. This effect can
be mitigated by providing a triple-modular redundant structure, consisting of three
SoCs, for masking transient, intermittent, and permanent SoC faults.

Fig. 7. TMR configuration in the TTA

Figure 7 depicts a triple-modular redundant (TMR) configuration of four SoCs of
the platform. Each SoC supports a number of different DASes. Let us assume that
the services of two DASes, the red DAS (right) and the blue DAS (left), are safety-

Application
Application

BLUE
FPGA

Component

 HF
Hardware

Unit

Gateway
to

TT Ethernet

Trusted
Network
Authority

On-Chip Network

Application

RED
Application FPGA

Component

 HF
Hardware

Unit

Gateway
to

TT Ethernet

Trusted
Network
Authority

On-Chip Network

Red Sensors Red Actuators Blue Sensors Blue Actuators

Application

RED
Application

BLUE
FPGA

Component

 HF
Hardware

Unit

Gateway
to

TT Ethernet

Trusted
Network
Authority

On-Chip Network

Application

RED
Application

BLUE
FPGA

Component

 HF
Hardware

Unit

Gateway
to

TT Ethernet

Trusted
Network
Authority

On-Chip Network

TT Ethernet
Switch I

TT Ethernet
Switch II

A B C D

 TTA Supported Service Availability 13

critical. We will instantiate the replicated micro-components of these safety-critical
DASes on three SoCs (on SoC A, B, and C for the red DAS, and on SoC B, C, and D
for the blue DAS) under the assumption that each SoC forms an independent fault-
containment region [18]. The communication between the SoCs is realized by two
replicated external deterministic communication channels via the TT service of TT
Ethernet [15]. It is assumed that the internal state of each red DAS micro-component
is periodically distributed to the other two red DAS micro-components for the pur-
pose of outvoting a transient error in the internal state. The same must hold true for
the blue DAS. The duration of the period of the internal state distribution determines
the repair time after the occurrence of a transient fault and is a critical parameter of
any reliability model. Replicated sensors input the information from the environment
to the respective micro-components. The output is delivered to fault-tolerant voting
actuators. In the configuration, the failure of any single device (input, output, SoC,
and any one of the two communication subsystems) is tolerated. A prerequisite for
such a fault tolerant structure to mask an error in any one fault-containment region is
the availability of a global notion of time and the timely and deterministic behavior of
the communication service among the SoCs and within the SoCs and the processing
within the micro-components.

6 Conclusion

The Time-Triggered Architecture provides a framework for the implementation of
triple modular redundancy (TMR) such that a continuous service can be provided to
its users, even in the presence of arbitrary component failures. In this paper we have
elaborated on the fault hypothesis of the TTA, described the structure of the TTA and
speculated about the future implementation of the TTA on a single giga-scale system
on a chip (SoC).

Acknowledgments

This work has been supported in part the European Integrated Project DECOS under
project number IST-511764, by the Austrian FIT IT project on TT Ethernet under
project number 808197/1729-KA/HN, by the European Network of Excellence
ARTIST II under project number IST-004527. Many discussions with within our
research group at the TU Vienna are warmly acknowledged.

References

1. Kopetz, H. and G. Bauer, The Time-Triggered Architecture. Proceedings of the IEEE,
2003. 91(January 2003): p. 112-126.

2. Pauli, B., A. Meyna, and P. Heitmann, Reliability of Electronic Components and
Control Units in Motor Vehicle Applications. 1998, Verein Deutscher Ingenieure (VDI).
p. 1009-1024.

3. Powell, D. Failure Mode Assumptions and Assumption Coverage. in Proc. 22nd Int. Symp.
on Fault-Tolerant Computing (FTCS-22). 1992. Boston, MA, USA: IEEE Computer Soci-
ety Press.

14 H. Kopetz

4. Ademaj, A., et al. Dependability Evaluation of the Time-Triggered Architecture with Bus
and Star Topology. in DSN Conference. 2003. San Francisco: IEEE Press.

5. CAN, Controller Area Network CAN, an In-Vehicle Serial Communication Protocol, in
SAE Handbook 1992. 1990, SAE Press. p. 20.341-20.355.

6. Driscoll, K. and K. Hoyme, SafeBus for avionics. IEEE Aerospace and Electronics Sys-
tems Magazine, 1993. 8(3): p. 34-39.

7. Thurner, T. and Heiner. Time-Triggered Architecture for Safety-Related Distributed Real-
Time Systems in Transportation Systems. in FTCS 28. 1998: IEEE Press.

8. Hazucha, P. and C. Svensson, Impact of CMOS technology scaling on the atmospheric
neutron soft error rate. IEEE Transactions on Nuclear Science, 2000. 47(6): p. 2586-2594.

9. Kopetz, H. Sparse Time versus Dense Time in Distributed Real-Time Systems. in Proc.
14th Int. Conf. on Distributed Computing Systems. 1992. Yokohama, Japan: IEEE Press.

10. Mesarovic, M.D. and Y. Takahara, Abstract Systems Theory. Lecture Note in Control and
Information Science. Vol. 116. 1989: Springer Verlag.

11. Kopetz, H. and N. Suri. Compositional Design of Real-Time System: A Conceptual Basis
for the Specification of Linking Interfaces. in ISORC 2003--The 6th International Sympo-
sium on Object Oriented Real-Time Computing. 2003. Hakodate, Japan: IEEE Press.

12. Kopetz, H., et al., From a Federated to an Integrated Architecture for Dependable Em-
bedded Systems. 2004, Research Repport TU Vienna.

13. Kopetz, H., Ademaj, A., El-Salloum, C., Grillinger,P., and B. Huber, Peti, P., Obermais-
ser, R., Steinhammer, K.,, A Time-Triggered SoC Platform for Distributed Embedded Ap-
plications. 2005, Technical University of Vienna: Vienna. p. 17.

14. Jones, C., et al., DSOS Conceptual Model. 2003: University of Newcastle upon Tyne,
Techn. Report CS-TR-782, TU Vienna, Technical Report 54/2002, Qinetic Technical Re-
port TR030434, LAAS Technical Report. p. 1-122.

15. Kopetz, H., et al. The Design of TT Ethernet. in ISORC 2005. 2005. Seattle: IEEE Press.
16. Constantinescu, C. Impact of Deep Submicron Technology on Dependability of VLSI Cir-

cuits. in Proc. of the 2002 International Conference on Dependable Systems and Net-
works. 2002. Washington D.C.: IEEE Press.

17. Roadmap, I., International Technology Roadmap vor Semiconductors, 2003 Edition. 2003,
Semiconductor Industry Association.

18. Kopetz, H. Fault Containment and Error Detection in the Time-Triggered Architecture. in
ISADS 2003. 2003. Pisa: IEEE Press.

The Value of Conformance Testing
and a Look at the SAF Test Project

Bob Spencer

Intel Corporation, 2111 NE 25th Ave., Hillsboro, OR 97124
bob.spencer@intel.com

Abstract. Industry acceptance of the Service AvailabilityTM(SA) Fo-
rum interface specifications is apparent with the increasing number of
commercial and open-source implementations based on the Hardware
Platform Interface Specification and Application Interface Specification.
To measure completeness and establish a standard, SA Forum is now
preparing the process to certify implementations of the B.01.01 specifi-
cations and beyond. SAF Test is an open source project where the tests
used for certification are created. This paper discusses the value of con-
formance testing and certification for service availability, especially with
regard to the Service Availability Interfaces. It also describes the chal-
lenges faced in starting and maintaining an industry-wide conformance
test project, and the value SAF Test brings to SA Forum implementa-
tions and customers.

1 Introduction

The Service AvailabilityTMForum1 recently released a new version (B.01.01) of
both the Hardware Platform Interface (HPI) Specification and Application In-
terface Specification (AIS). The new versions have been quickly adopted by open
source projects. OpenHPI2 released a new implementation at the end of 2004,
and OpenAIS3 will complete implementations of many of the AIS services in the
first half of 2005. A look at the SA Forum product registry shows that many com-
mercial implementations of prior specifications have already been completed. It
is anticipated that many of these will be updated and that new implementations
based on the latest version will be completed this year.

Accompanying the success of SA Forum in the industry is the responsibility
to certify each of the implementations and provide a measure of correctness to
customers. While each implementation may have its own validation tests, this
does not ensure that any two interpretations of the specification will be consis-
tent. SA Forum certification, in conjunction with SAF Test, offers a solution.
Beginning in the 2nd half of 2005, SA Forum will begin the formal process of
certifying HPI implementations based on the B.01.01 specification. AIS certifi-
cation is anticipated to begin in the first half of 2006. The tests that will be used
1 Service AvailabilityTMForum (http://www.saforum.org).
2 The OpenHPI Project (http://openhpi.sourceforge.net).
3 The OpenAIS project (http://developer.osdl.org/dev/openais).

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 15–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

16 B. Spencer

for certification are being created and maintained in SAF Test, an independent,
open source project. This project provides an open test repository containing all
SA Forum conformance tests for any vendor to use, inspect, and contribute to
while preparing their implementations for SA Forum certification.

Strict compliance to a specification does not guarantee a fool-proof solu-
tion; however it does have many advantages. This paper describes the ways that
conformance testing can help a project and where it falls short and also talks
about the benefits of certification. In addition, the SAF Test project will be
presented with its strengths and shortcomings as a viable solution to providing
conformance test suites for open specifications.

2 Conformance Testing

The objective of conformance testing is to establish whether an implementation
being tested conforms to the specification as defined in a standard[1]. Confor-
mance testing is generally much clearer than functional or behavioral testing
and only limited by the clarity of the specification, or lack thereof, in identifying
acceptable parameter values, call order, and return codes. Guidelines, such as
those found in the IEEE Standard for measuring conformance to the POSIX
standards[2], offer a clear format for conformance tests and identify levels of
testing, test assertion documentation, and output format.

2.1 What It Provides

Testing with a complete conformance test suite provides many benefits. First,
it is a good exam of the overall software and determines if there are any places
the implementation does not follow the standard. It will exercise all methods
with a thorough number of possible parameters, including multiple valid values,
boundary conditions, and multiple error conditions. Often tests written in-house
will do a good job at covering the most-used execution path or easily produced
errors but leave many of the less-often-used or less-understood methods under-
tested. Second, the rigor of compliance testing is a good stress test and identifies
implementations that can be relied upon. Since every method is exercised mul-
tiple times, some confidence can be obtained that it won’t crash given valid and
invalid parameters. Finally, one of the primary reasons for basing an implemen-
tation upon a standard is to ensure modularity. Passing conformance testing
provides a measure of confidence that the implementation can be used in modu-
lar service availability environments. While this last point is not guaranteed, it
is unlikely to be satisfied without at least passing conformance tests.

2.2 What It Does Not Provide

Conformance testing alone is not sufficient for commercial-quality solutions. It
does not provide any performance measurements. Unless calling a method hangs
indefinitely it may still pass conformance testing and be slow or even unusable. It

The Value of Conformance Testing and a Look at the SAF Test Project 17

also doesn’t test for side effects unrelated to the task at hand, such as deleting the
wrong file or consuming too many resources and interfering with other processes.
It does nothing for interoperability testing unless specifically called out in the
specification. For example, SA Forum HPI implementations may leverage IPMI
to gather information from the hardware. During conformance testing the HPI
implementation may substitute calls to IPMI with calls to an IPMI stub or
dummy plugin. Though the HPI implementation will pass conformance testing
there is no guarantee that it will work when using IPMI. Finally, conformance
testing does not cover the issues of hardware compatibility which is especially
important for hardware specifications such as the HPI specification.

Table 1. Summary of Conformance Testing Benefits

What it can do What it can NOT do
Shows if the implementation follows the specifica-
tion

No performance measurements

Provides a good stress of the implementation No test for undesired side effects
Exercises all the methods with a reasonably thor-
ough combination of parameters

No interoperability check

Demonstrates a level of stability No hardware compatibility check
Provides a strong assurance of modularity

Given the unambiguous nature of conformance testing, the results are usually
concrete. This concrete result is what certification relies on and certification is
discrete: either the implementation is certified, or it is not.

3 Certification

The quality of certification relies on the accuracy and thoroughness of the con-
formance tests, which as previously mentioned, relies on the clarity of the spec-
ification. In the case of Service Availability Interfaces, the clarity and quality
has improved through multiple revisions and contributions of leading industry
players. This enables a solid suite of tests to be written that will give credi-
bility and meaning to the SA Forum certification. However, wide-spread use of
implementations based on these specifications will be the real qualifier.

3.1 Why Get Certified?

”My implementation has been working in-house and at our beta customers’ sites
for over a month. Why do I need to get certified?”

Given the variety of implementations, it is important to have a formal pro-
cess which can verify that a given solution fully conforms to the specification.
Though well-intentioned developers may do their best to fully comply with the

18 B. Spencer

specification, and well-intentioned test writers may do their best to fully test
the implementation, errors will still exist due to differing specification interpre-
tations, software bugs, or incomplete testing. Certification is usually a much
more thorough examination of the implementation, especially with regard to the
less-often-used methods or more obscure parameter value possibilities.

By completing the certification, implementers benefit in multiple ways. First,
they have one good measure of the completeness of their code. Second, they
can claim their solution is certified by SA Forum to customers and competi-
tors. Finally, they benefit from the increased value of the specification. With-
out certification it is impossible to ensure conformance and without confor-
mance the specification becomes a suggestion instead of a standard. Basing
an implementation on a standard interface increases the likelihood that it will
get used.

4 SAF Test

The SAF Test open source project was first introduced in September, 2004 with
a mission to become the central repository of conformance test suites for SA
Forum published specifications including HPI and AIS. Given that published
SA Forum specifications are open, it made sense for the conformance tests to
be open too. Another influence in starting the project was the successful track
record of the Open POSIX Test Suite which contains conformance tests for
the IEEE Std 1003.1-2001 System Interfaces specification and has been running
since 2002.

SAF Test is setup on sourceforge where the mailing lists, CVS-based source
repository, and web site are maintained (http://saftest.sourceforge.net).

4.1 Project Challenges

Setting up the SAF Test project went fairly smoothly as it had the support of
key SA Forum member companies. Here are some of the challenges we faced,
and resolutions if they’ve been resolved.

– Licensing: One of the first big challenges was deciding what open source
license to use. Some companies desired a BSD license so that proprietary
additions (such as functional tests) could be distributed with the SAF Test
suite to customers without having to give those changes back to SAF Test
or the general public. Other companies felt that conformance tests, and all
changes and enhancements, should be open for everyone to use. Allowing
companies to take the conformance tests and modify them for their own
needs would potentially create multiple versions of the tests and reduce the
value of a single open repository. In the end, the GPL license was selected.
We are hopeful that this decision will not prevent some partners from using
the tests.

The Value of Conformance Testing and a Look at the SAF Test Project 19

– Test Collection: When we began, many implementations of the HPI and
AIS specifications already existed, both proprietary and open source. The
first objective of the group was to collect all the valuable test cases and where
possible have the owning companies release them and port them to the new
framework. There were hundreds of tests at various stages of completeness.
Although this work was somewhat tedious, in the end the ability to import
these tests gave the project a good start and also helped involve others
more quickly.

– Licensing Tests to Import: Including tests from other projects always
involves checking for license compatibility. In a couple of cases we had to
wait for legal departments to approve the release of their companies’ tests.
For example, OpenHPI had already completed the first implementation of
the SA Forum HPI A.01.01 specification when SAF Test was started. There
were hundreds of excellent conformance tests that were part of the project
that SAF Test wanted but needed re-licensing. Eventually the tests were
opened for GPL license and imported.

– Open contributions: Open source often means open for criticism. While we
have not had great challenges in this regard, it is more difficult to manage
change in the open source than in an in-house project. Final say usually
takes community agreement. However, this is also the advantage of having
solutions open.

– Limited contributions: Community involvement in the development work
is isolated to a small number of people from a couple of companies. While
this is understandable, it is still challenging to get the work done with just
a few resources.

4.2 Benefits of SAF Test

The value of SAF Test has been seen in many areas and offers benefits to both
SA Forum as well as specification implementers:

– A single test repository: All conformance tests for SA Forum specification
are organized, always available, and in a well-known location. This, in turn,
has benefits, namely:

– Eliminates duplicate test creation: Each company that decides to
implement one of the Service Availability Interfaces knows that they
already have a complete conformance test suite at their disposal. This
reduces duplication of work and saves them money.

– Consistency across the industry: Every company has the same op-
portunity to test their implementations against the standard.

– Test creation is independent of any particular implementation:
With an open door for solutions, suggestions, and contributions, the tests
are not just tailored for a particular solution. In addition, the beneficiaries
are not just the open source implementations. Whether or not companies
are contributing resources, they are still able to utilize the tests.

20 B. Spencer

– Tests and framework can be reviewed and corrected by anyone:
In relation to being independent, the framework can be seen by anyone and
updated publicly.

– Tests and framework become hardened: With multiple vendors using
the tests and verifying their solutions, the tests become hardened before they
are used in the certification process.

– Certification is more transparent: Implementations can be pre-verified
by creators, saving time and money. There should be no big surprises when
it comes time for official certification.

– SA Forum saves money while maintaining control over the out-
come: Since contributions come freely from participating companies, SA
Forum does not need to invest as much in the development of the tests. At
the same time, SA Forum working groups can monitor the progress and can
insert ideas and make clarifications as the work progresses. Finally, the tests
will be reviewed by SA Forum before certification begins.

– Communication: SAF Test developers, the SA Forum working group
members, and the community have a forum to discuss issues relating to
the specification and conformance. There have already been many questions
posed regarding what a particular portion of the specification means or why
a test returns the values it does. If necessary, SA Forum members can take
specification bugs back to the working group for changes.

4.3 Test Framework

The test framework contains many of the conformance test standards specified
in the IEEE Standard for measure conformance to the POSIX standards. As it is
possible to get a more up-to-date description of the current framework by read-
ing the online documentation on the SAF Test web site, only a brief overview
will be provided here.

The test suite can be downloaded from the SAF Test web site. It contains
a simple directory structure that contains the tests and execution scripts. The
layout is shown in Figure 1.

Running make will build all tests in the current directory and sub-directories.
The script run tests.sh executes all tests in the current directory and sub-direct-
ories. The output is a file called result.txt that contains the number of tests that
passed, failed, blocked, or were not supported.

In the interface folders (see saCkptInitialize in Figure 1), tests are identified
by 1.c, 2.c, The file assertion.xml describes each of the tests and their expected
return code. This information is also contained within the test file header. The
file coverage.txt identifies which tests are still needed for complete conformance
coverage.

Conformance. All tests in the SAF Test suite are simple conformance tests. As
described above, conformance tests verify that every method in the
specification is implemented, can be called successfully, and returns the cor-
rect value given correct and incorrect parameters. Each specification directory

The Value of Conformance Testing and a Look at the SAF Test Project 21

Fig. 1. Layout of SAF Test directories

(see AIS-ckpt-B.01.01 in Figure 1) will contain a description of all test cases,
along with tests that validate output of each method given all possible (within
reason) combinations of input and output. The test suite will provide line-by-line
coverage of the SA Forum B.01.01 specifications and any future specifications
used for certification. This coverage will follow the guidelines for Thorough
Testing as stated in section 7.2.2 of the IEEE Standard for measuring confor-
mance to the POSIX standards:

Thorough testing is a useful alternative to exhaustive testing. Thorough
testing seeks to verify the behavior of every aspect of an element but does
not include all permutations. For example, to perform thorough testing
of a given command, the command shall be tested with no options and
then with each option individually. Possible combinations of options also
may be tested. [2]

Each API will be exercised multiple times given parameters that cover
normal and error conditions, including boundary conditions if it applies. In
addition, methods that accept multiple parameters will be exercised with a
reasonable number of value combinations (correct and incorrect) to verify that
the predicted results are generated. If the order in which API’s are called causes
different results, an attempt will also be made to exercise these possibilities.

22 B. Spencer

Although this level of testing is not absolutely comprehensive, it can still
provide sufficient confidence that a given implementation is complete and
will work.

Licensing. As mentioned previously, all tests and documentation in SAF Test
are licensed as GPL, version 2. The GPL license was selected because of the
nature of the tests, with the basic position that conformance tests should be
open and that changes and enhancements to the test suite should be made
available to everyone.

4.4 Brief Project Status

The first goal of SAF Test was to complete all tests for the HPI and AIS A.01.01
specifications by the end of 2004. The project enjoyed a quick start by leverag-
ing tests that had already been developed for OpenHPI and LinuxHA. The tests
were organized into a single, well-structured framework. This framework and re-
lated documentation simplified test contribution and made it easy for developers
to see what areas were not yet complete. Scripts were created to automate the
building and execution of the tests.

In mid-January all HPI tests, and all AIS tests except AMF were completed
for A.01.01. These tests have been used by OpenHPI, OpenAIS, LinuxHA, and
others to validate their implementations as well as prove the test framework and
identify areas for enhancement.

Note: SA Forum will not be using the A.01.01 tests or certifying A.01.01 im-
plementations. However, completion of the A.01.01 tests satisfied the intended
goal of solidifying the test framework and motivating implementers to contribute
to the project and participate on the mailing lists.

SAF Test will provide the tests for SA Forum certification which begins with
the B.01.01 specification. Beginning again with an excellent base of tests from
the OpenHPI project (∼500 tests), the test suite for HPI should be completed
by the end of Q2, 2005 (>700 individual tests). SA Forum is planning to be-
gin certification for HPI implementations in early Q3, 2005. AIS test creation is
also ongoing, and tests for individual services will be made available as they are
completed. All AIS tests (>1500 individual tests) should be completed before
the end of 2005.

SAF Test will continue to provide tests for future SA Forum specifications
and versions. In addition, more in-depth, or functional testing may be added to
enhance the conformance tests, as requested by SA Forum.

4.5 SAF Test Schedule

The schedule for SAF Test is influenced by the number of resources contributed
by participating companies. The primary milestones are listed in Table 2. For
more details, please visit the project website.

The Value of Conformance Testing and a Look at the SAF Test Project 23

Table 2. SAF Test Schedule

Date Task Status
Jan. 15, 2005 AIS-A.01.01 and HPI-A.01.01 Complete

Definition: Release AIS A.01.01 services ex-
cept AMF. Release HPI A.01.01 tests.

Complete

Feb. 11, 2005 AIS-B.01.01 Membership
HPI B.01.01 test coverage documented

Definition: Release AIS B.01.01 membership
service line-by-line tests. Document how to get
line-by-line coverage of AIS and HPI B.01.01
specifications. Import OpenHPI B-spec tests into
SAF Test framework.

Complete

Apr. 06, 2005 AIS-B.01.01 Checkpoint Service
HPI-B.01.01 General and Domain Sections

Definition: Release AIS B.01.01 checkpoint-
ing service tests. Release HPI B.01.01 line-by-line
tests for the general and domain sections.

Complete

May 15, 2005 HPI-B.01.01 Sensor, Control, Inventory,
Hotswap

Definition: Release major portions of the HPI
B.01.01 resource section including sensor, con-
trol, inventory and hotswap tests.

Complete

May 20, 2005 AIS-B.01.01 Event Service
Definition: Release AIS B.01.01 event service

line-by-line tests.

Complete

May, 2005 SA Forum Working groups begin review of
HPI-B.01.01 tests

Not started

June 15, 2005 HPI-B.01.01 Complete
Definition: Complete line-by-line coverage for

complete HPI B.01.01 specification. Tests are
ready to hand over for SA Forum certification.

In progress

July 2005 SA Forum Working groups complete re-
view of HPI-B.01.01 tests

Not started

July 2005 SA Forum Certification begins for HPI
B.01.01

Preparation started

December 2005 AIS B.01.01 Complete
Definition: Complete line-by-line coverage for

complete AIS B.01.01 specification.

Not started

5 Summary

Conformance testing hardens an implementation of a standard and provides a
good measure of confidence about the implementation’s ability to be used in a
modular, service availability environment. Additionally, the tests provide a de-
gree of stress testing and thorough coverage of the code. Once an implementation
is able to successfully complete a full conformance test pass, it is advantageous to
the implementer and the customer for the implementation to become certified.

24 B. Spencer

In the case of SA Forum certification, the conformance test suite that will
be used will be the one developed in the SAF Test open source project. This
open development has numerous benefits and very few disadvantages. If anyone
is preparing a solution that implements one of the Service Availability Interfaces,
they should become familiar with the SAF Test project and take advantage of
the excellent source of conformance tests. SA Forum certification is just around
the corner. Climb aboard!

References

1. Tam, F. and Ahvanainen, K., First Experience of Conformance Testing an Applica-
tion Interface Specification Implementation, Service Availability, First International
Service Availability Symposium, ISAS 2004, Revised Selected Papers, Munich, Ger-
many, May 13-14, 2004.

2. IEEE Std 2003-1997: Requirements and Guidelines for Test Method Specifications
and Test Method Implementations for Measuring Conformance to POSIX Standards,
1998.

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 25 – 38, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Building Highly Available Application Using SA Forum
Cluster: A Case Study of GGSN Application

Ajay Kamalvanshi1 and Timo Jokiaho2

1 Nokia Corporation,
313 Fairchild Drive, Mountain View, CA-94043, USA

ajay.kamalvanshi@nokia.com
2 Linnoitustie 6, 02600 Espoo, Finland
timo.jokiaho@nokia.com

Abstract. Most of the highly available applications are built on top of
expensive cluster software with proprietary application interface and have
problems with maintenance and enhancements. The SA Forum has standardized
application interface for building highly available applications. This paper
discusses our experience with early adoption of SA Forum specification both
for implementation of a cluster as well as developing a real-world telecom
application. This paper outlines steps to develop highly available application on
a SA Forum based cluster using an element of 3G networks, GGSN, as a case
study. Various design considerations such as building standby; synchronizing
between active and standby; and handling switchover are discussed in detail. In
addition, we have included the lessons that we learnt during development,
integration, and testing to help prospective developers of complex real-time
telecom applications.

1 Introduction

The SA Forum has defined Application Interface Specification (AIS) for
developing highly available applications particularly for the telecom domain
where the downtime requirements are less than six minutes in a year [8].
This paper discusses experience of developing a Highly Available (HA)
middleware and a telecom application based on SA Forum’s specifications. The
cluster is implemented on a multi-blade multi-chassis system to provide third
generation (3G) network functionality. The system is part of the network architecture
as proposed in Third Generation Partnership Project’s (3GPP) release 5 specifications
and functions as a Gateway GPRS Support Node (GGSN).

This paper begins with an overview of the target platform and its software
architecture. The overview is then followed by introduction of HA middleware
that implements the SA Forum cluster. Subsequently, the paper focuses on
the application. A brief introduction covers the 3G domain and application’s
functions. The remaining paper covers various high availability aspects of the GGSN
application.

26 A. Kamalvanshi and T. Jokiaho

2 Overview of Cluster Platform

The cluster platform consists of two chassis containing several computing blades, as
illustrated in Fig.1. Logical overview of cluster hardware. Each blade in both chassis
is a fully functional unit in terms of hardware and operating system, i.e., each blade
has processor(s), memory, and an instance of an operating system. The blades are
further connected with each other using switched redundant Ethernet for inter-blade
communication. Based on the provided system functionality, the chassis are referred
to as Server and Router chassis. The server chassis provides value added services or
control plane functionality. The router chassis provides routing and forwarding
functionality, also known as user plane functionality. The line card interfaces that
connect to other equipments in the 3G networks are located on router blades.

Server
Blade

Server
Blade

Server
Blade

Server
Blade

Router
Blades

Router
Blades

Router
Blades

Router
Blades

Ethernet (redundant)

Ethernet (redundant)

Router

Server

Fig. 1. Logical overview of cluster hardware

The GGSN application described in this paper runs on server blades and uses
router blades for external connectivity and setting up user specific forwarding table.

2.1 Software Architecture

The telecom operators demand network equipment to be scalable -- in short term and
long term -- as well as highly available. In hardware, this translates to designing

 Building Highly Available Application Using SA Forum Cluster 27

extendable system beyond one chassis, and on chassis-level, support for hot-
swappable blades. In software, this translates to scalable distributed systems that are
generically referred to as clusters in computing parlance.

Nokia has built an Intelligent Network Operating System (INOS) to address
distributed carrier-grade requirements for networking equipments. The software
architecture, as depicted in Figure 2 Software architecture, is layered to provide
flexibility. Each component in the architecture provides services based on well-known
interfaces. Thus, any component could be independently replaced by competing
components that provide similar interface with controlled impact on overall system.
The INOS uses a carrier-grade base operating system for basic services such as
scheduling, process management, memory management, I/O, and network services.
The shelf management component abstracts hardware management aspect of chassis.

The system management module, distributed across various blades (and chassis),
provides unified single system view. The clustering middleware provides
infrastructure for service availability via SA Forum defined AIS interfaces. Finally,
the applications are built on top of INOS with standard service interface such as
POSIX and AIS.

The communication among various nodes of the cluster is based on fast message
queue based Inter Process Communication (IPC).

AIS, HPI & POSIX

Hardware

Carrier-Grade Operating System

SA Forum Clustering
Middleware

HPI & POSIX

Application

Embedded DB
Shelf

management

System
Management

INOS

IPC

Fig. 2. Software architecture

The rest of this paper is focused on application and service availability
middleware.

2.2 Service Availability Middleware

The service availability framework of the INOS is based on the SA Forum’s AIS A
1.0 specification [9], although our initial implementation started with draft version
(0.8), to achieve fast adoption and possibility to provide real-life feedback to the SA

28 A. Kamalvanshi and T. Jokiaho

Forum. We selectively adopted few areas of specification due to product release
deadlines and to prevent conflict with our existing stable services. We started with
Application Management Framework (AMF) and peer-to-peer check pointing APIs –
which were withdrawn from the SA Forum’s specification with an understanding to
replace it with more generic messaging API in future (1.0 release); however, it was
sufficient to address most of our application’s need. The AMF is implemented as
distributed framework: An AMF process runs on every node and communication
among AMF processes is done using IPC. We also decided to continue using our
existing message based IPC, name lookup service, and startup procedure, as these
were being drafted and reviewed in the forum.

In addition, although designed to be compliant with SA Forum’s specification, our
implementation is done in phases to support the redundancy model as per product
requirement of 2N redundancy – where each active component is protected by a
similar standby component.

To realize SA Forum’s entities, a mapping is done from existing INOS entities to
SA Forum’s entities as depicted in Table 1: Mapping of INOS concepts and SA
Forum. These are presented here to draw comparison and to provide an example of
implementation. As per SA Forum specification, a cluster is collection of cluster
nodes. In our system, a cluster node as well as physical node maps to the server blade
shown in Figure 1 Logical Overview of Cluster Hardware. Logically, a node
represents physical blade along with an instance of operating system, INOS. A node is
assigned a role of active or standby during system initialization through hardware and
software arbitration. This role is subsequently used for assigning component service
instance and HA state to components of a node. The mapping of SA Forum logical
entities such as service units, service instance, component, component service
instances, and service groups are also simplified for quick adoption. The components
are mapped to applications such as GGSN application. A component service instance
is assigned to an application process on a node. A service unit comprises of only one
component; service instance and component service instance are assigned to a service
unit along with HA state based on role of the corresponding node. The application on
a node uses the HA state for differentiating the processing. The service group and
protection group are formed between service units and components. The
corresponding system model is shown in Figure 3 SA Forum System Model entities.

In Figure 3 SA Forum System Model entities, the GGSN application is shown as
SA Forum component C1 and C2 on Node 1 and Node 2 respectively. The service
units S1 and S2 have only one component C1 and C2 respectively, and form a service
group SG1. A service instance A is assigned to service unit S1 and S2 by assigning
active HA state to C1 and standby HA state to C2. A protection group, PG A1, is
formed is formed between C1 and C2.

When a node with active role fails, the readiness state of its service units is
transitioned to out-of-service. This also results in transitioning of associated
components’ readiness state to out-of-service. The node with standby role then
transitions to active triggering transition of its component’s HA states to active. After
the fail-over the component assumes role of failed component and processes
subsequent requests. This is further described in next few sections.

 Building Highly Available Application Using SA Forum Cluster 29

Table 1. Mapping of INOS concepts and SA Forum concepts

INOS concepts SA Forum concepts

Router and server chassis with multiple blades

Cluster

INOS Node: A computing process complex in a blade
with a CPU, memory and I/O along with instance of
operating system

Node

Application such as GGSN application Component
An instance of application on a node such as GGSN
process

Component Service
Instance assignment

GGSN application along with management interface Service Unit
GGSN application on a node handling predefined
Service workload

Service Instance
assignment

Association of GGSN process with active and standby
role

Service Group

Association of GGSN process with active and standby
role for a workload

Protection Group

Our middleware was required to support two additional features: hot standby and
non-revertive switchovers. To support hot standby, all components with standby HA
state are always kept in sync with components with active HA state. The primary goal
of this scheme is to minimize the affect of switchovers on the user services. Non-
revertive switchover refers to the ability of system to prevent unnecessary switchover
when the failed active component becomes ready again.

N o d e 1 N o d e 2

S e rv ic e G ro u p S G 1

P G A 1

S e rv ic e
In s ta n c e A

C S I A 1

 a c tiv e s ta n d b y

S e rv ic e U n it S 1

G G S N (C 1)

S e rv ic e U n it S 2

G G S N (C 2)

Fig. 3. SA Forum system model entities

 Building Highly Available Application Using SA Forum Cluster 31

as IP backbone network. GGSN is also responsible for assigning an IP address for the
UE that is known to data network. Consequently, it must maintain a routing table for
all UEs and route data to the SGSN associated with the UE. The interface between
GGSN and data network is referred to as Gi interface and uses Internet Protocol (IP).

The following GGSN functions are supported in our system:

 Session Management: PDP context creation, context modification, and
context deletion.

 WLAN connection management
 User profile management
 Service configuration
 IP address allocation
 Subscriber authentication
 Charging
 Misc. functions like Operation and Maintenance (O&M) functionality, Fault

management, and trace management.

The details of these functionalities are covered in the 3GPP specifications [1], [2], [3],
[4], [5], [6], and [7].

3.1 Application Design

The GGSN functions are implemented as an application process with many
subsystems. The application process is a Unix daemon that listens on multiple sockets
for application events or messages. When an event is received, the registered event
handler is invoked. The event handlers are implemented in subsystems and are
registered with the main application during startup.

The main subsystems of GGSN application are: session management, charging,
statistics, QoS, and access point management. The session management subsystem is
responsible for handling GTP message processing for tunnel management such as
PDP context creation, deletion, and modification; managing path connectivity with
associated SGSN -- sending periodic keep-alive requests, echo requests, towards
connected SGSN and responding to keep-alive requests from SGSN (referred to as
path management in 3GPP TS29.060 [2]); handling error conditions such as
undeliverable user data packets, G-PDU; and handling overload conditions. The
charging subsystem implements charging functionality, as defined in 3GPP TS32.215
[7], and processes the GTP’ messages. The statistics subsystem is responsible for
collecting and maintaining counters. The QoS subsystem is responsible classifying
services and mapping services to IP’s differentiated service based on traffic classes.
The access point management subsystem manages access points – access points
identify external network and optionally service to be offered; handles address
allocation; and implements authentication.

4 GGSN Application HA

This section explores procedure for making GGSN application highly available. The
steps described in this paper may be applicable to other application designed for

32 A. Kamalvanshi and T. Jokiaho

protocol processing. However, the implementation choices and redundancy models
often depends on the product requirements.
The service availability product requirements for GGSN applications are:

 The product must support five nines (99.999%) service availability, i.e.,
planned as well as unplanned downtime should not exceed more than 5.24
minutes in a year.

 The product should not have any single point of failure. All the components
must be protected by similar components.

 Upon failure detection, the switchover time for the user services should not
be more than 50 milliseconds (ms).

 The remote nodes should not notice failure of the GGSN application during
switchover.

 All the important statistics and counters such as remaining prepaid time
should not be impacted.

 The management connectivity such as management telnet session may not be
highly available.

 Synchronization with standby must have minimum impact on service
processing on active.

These requirements map to 2N redundancy model where every service unit is
protected by another service unit of same type. We have further extended the
protection at node level where every node is protected by similar node by assigning
roles based on node’s role. This also means that all important states of active and
standby are synchronized; and the standby is always ready to assume role of active.
The component capability model chosen for GGSN application is
1_active_or_1_standby.
The task of making GGSN application highly available starts with identifying the
following aspects of application:

 Application startup and role determination.
 Association between active and standby components.
 Handling switchovers
 Reporting errors
 Determining synchronization mechanism for building standby including

initial warming and updating for dynamic changes.

Application Management Framework (AMF) handles all above aspects but for
synchronization automatically. Determining synchronization mechanism requires
detailed analysis of application behavior. To help application designers, INOS
middleware provides guidelines and classifies schemes under the following
categories:

 Static scheme: This mechanism is useful for applications that don’t change
behavior after initial configuration. The initial configuration of these
applications is done either using run time parameter or a configuration file.
This scheme can be easily realized by communicating the configuration
information.

 Building Highly Available Application Using SA Forum Cluster 33

 Provisioning based configuration scheme: This mechanism is useful when
operator needs flexibility of changing application states using command line
or similar interface. The state or configuration change is reflected on the
standby upon completion of the command. Whether the standby immediately
updates its states or waits for the role transition is application specific.

 Network or dynamic scheme: This mechanism is applicable in scenarios
when the application is processing network based requests for establishing
sessions or populating tables required for forwarding, routing, etc. It enables
the state-full replication between active and standby component service
instances. In this case, standby is updated after end of every transaction.

In GGSN application, all the above scenarios are used. The initial configuration is
synchronized; the operator initiated command line changes are dynamically updated
to standby; and GTP processing to create, destroy and modify tunnels is replicated
using dynamic scheme. The synchronization mechanisms are illustrated in Figure 5
Synchronization architecture with sequence numbers. The sequence numbers are
shown for processing of a typical provisioning command. When a configuration
change request is received from the operator, the changes are first made to the
database that stores the configuration (step 1 through 3) after validating the request.
The database replicates the data on the standby node using peer-to-peer check
pointing service (step 4 and 5). The application then changes the dynamic state (step
6). At this point, the application must reflect the same changes to the standby
component. Again it uses the peer-to-peer check pointing (step 7 through 11) to
synchronize application states. The AMF in the figure is responsible for initial
synchronization and communicating availability state changes. For processing
network requests such as GTP messages, steps 1 through 5 is skipped.

Observe that database as well as application uses peer-to-peer checkpoint service.
The database uses peer-to-peer checkpoint service for replicating persistent
information or configuration data, while the application uses it for runtime state
synchronization.

4.1 Interaction Between Application and AIS Components

This section describes the interaction between INOS’s HA middleware and GGSN
application. The timeline is captured in Figure 6 Interaction between GGSN and HA
Middleware. The important steps are:

1. The HA middleware determines the node role through hardware
arbitration; this role is then assigned to all the components of that node.

2. The GGSN application initializes AMF and peer-to-peer checkpoint areas
along the callbacks.

3. The GGSN application then registers itself with the middleware using the
handle and the component name.

4. The selection objects are then obtained from the middleware for each area.

34 A. Kamalvanshi and T. Jokiaho

RAM status
structures

Persistent
Data

GGSN

Chkpp

Datastore

AMF

RAM status
structures

Persistent
Data

Flash
Disk

Peer GGSN

Chkpp

Datastore

AMF

Flash
disk

4a. Update
the peer
datastore

1.
 Application
changes Data

2.
Application

updates Data

3. datastore puts
in flash disk

7. send
update
request

5. update
standby flash

8. send
update IPC

9. task sends
ack/nack

10. Chkpp
updates
states

6*. update
ram structure

4b.
Update the

peer
datastore

Active Node Standby Node

* happens after the datastore update

On becoming active task
validate data

11. send
update
request

Fig. 5. Synchronization architecture

5. The application requests for passive monitoring and health check start. The
handling for failure is currently defined in startup configuration file.

6. The HA middleware (AMF) then calls smAmfCSISetCB to transition the
components HA state. In our implementation, this is assigned to role of the
Node.

7. The application then registers for tracking changes and responds the
periodic health check callbacks. At this time, the application is ready to
perform target service. Building of standby is considered to be passive or
in background, and the remote node does not know anything about
standby. The active component then waits for standby for synchronization
steps. All the steps (1 through 7) occur on all the nodes.

8. When standby component is ready to synchronize, it requests for bulk
update, or warming request, to active component using
saChkppWarmSyncStart. This message is sent to AMF on active that in
turn invokes saChkppWarmSyncStartCB callback method.

9. The active component then uses saChkppPush to send data to standby. In
the last packet, the active sets no more data flag. When standby receives
this, it calls saChkppWarmSyncEnd. At this time, AMF knows that both
the components have synchronized state.

10. After this step, the active updates standby whenever important state change
occurs on active component.

11. When AMF detects failure of active node, the AMF on standby notifies to all
the components to transition from standby to active HA state.

 Building Highly Available Application Using SA Forum Cluster 35

Note that the standby initiates saChkppWarmSyncStart unlike the current
checkpoint service where active initiates checkpoint creation. This design decision
was made to reduce burden on active and the standby was responsible for initiating
synchronization and declaring itself hot-standby.

4.2 Design Description

As mentioned in earlier section, the synchronization mechanism uses the peer-to-peer
check pointing APIs that were retracted later. These APIs are very similar to the
current messaging APIs. Since the check pointing APIs were being defined when our
implementation had started, we decided to use peer-to-peer check pointing. Some of
these issues discussed in this section are already addressed in the official check
pointing APIs, the new applications are recommended to use check-pointing APIs for
future usage.

Handling of Timers. Most of the timers are started only on active to reduce the
overhead and synchronize state change between active and standby. If the active and
standby change states based on timers independently, then active and standby will
soon have different states. However, some exceptions are made for timers that are
required for ensuring correct behavior of application after switchover. The examples
of these are session timers, DHCP lease timers of IP addresses, and transaction timers.

4.3 Warm Update

Warm update, also called bulk update, is initiated when standby component is ready
to synchronize with active component. This transfer is done in background to
minimize impact on service processing on active and requires sending the all the
relevant states to the standby including:

 Access Point Database containing all access points
 IP Addresses
 Session and lease timers of IP address
 Configuration data
 Charging related information such as last record sent out and pending

records.

The warm update is always done in a sequence to preserve dependencies across
subsystems. Additionally during warm updates, the active component continues to
process external events, and all such events are handled as transactions described in
previous section.

4.4 Switchover

The HA middleware handles two types of switchover scenarios. The first scenario,
graceful shutdown, is initiated upon receiving operator’s command. In this scenario,
HA middleware sends a notification to all the components in a node. An attempt is
made to flush the transient sessions. The GGSN application receives this notification
and performs housekeeping function such as informing other components in the

36 A. Kamalvanshi and T. Jokiaho

cluster; it then completes the processing of all pending configuration transaction.
Finally, the standby component is notified, and it validates, flushes incomplete
transaction, and assumes active role.

GGSN
Node 1

Middleware
Node 1

GGSN
Node 2

Role
Assignement

saAmfDispatch

saChkppWarmSyncStart

saChkppWarmSyncStartCB

saChkppPush

saChkppPush

saChkppWarmSyncEnd
saChkppWarmSyncEndCB

saAmfProtectionGroupTrackCB

saAmfInitialize

saChkppInitialize

saAmfComponentRegister

saAmfSelectionObjectGet

select

saAmfPmStart

saAmfHealthCheckStart

saAmfHAStateGet

saAmfCSISetCB

saAmfProtectionGroupTrack

saAmfHealthCheckCB

saAmfHealthCheckConfirm

saAmfInitialize
saChkppInitialize

saAmfComponentRegister

saAmfSelectionObjectGet

select

saAmfPmStart

saAmfHealthCheckStart

saAmfHAStateGet

saAmfCSISetCB

saAmfProtectionGroupTrack

saAmfHealthCheckCB

saAmfHealthCheckConfirm

saAmfDispatch

Role
Assignement

Middleware
Node 2

saChkppSelectionObjectGet saChkppSelectionObjectGet

Fig. 6. Interaction between GGSN and HA Middleware

The other type of switchover, forced switchover or sudden death, occurs when one
or more components or when a node fails. The failure of active node is detected when
standby receives an interrupt indicating failure of active or when it stops receiving
heartbeat from active. In this scenario, the standby component is informed about the
transition. The standby component does minimum validation before assuming active
role.

In both scenarios, external interface for management such as management telnet
session, charging gateway connectivity is lost. The connection with management

 Building Highly Available Application Using SA Forum Cluster 37

nodes and charging gateway are re-established after the switchover. The data-path
traffic, however, continued as the data plane is also synchronized separately with
standby data-plane blade. This mechanism ensures the switchover time to be less than
50 ms for data-plane.

5 Lessons Learned

Early adoption always has unforeseen challenges, and simplifying assumptions helps
to meet the product milestone. Our decision for simple mapping of node, service unit,
service instance, component etc helped us to shorten the development time and testing
complexity. Furthermore, our decision to use AMF and peer-to-peer check pointing
proved to be sufficient to implement all service availability feature requirements for
the product. As in all practical projects, valuable lessons are learned during
development, integration, and system testing. Here are some of these lessons that
made us wiser:

1. There is nothing like same-size-fits-all redundancy solution. Each
application must be studied for external dependencies, the synchronization
schemes, and switchover behavior. Use of schemes defined in section 4 were
very helpful for new HA developers.

2. Choose synchronization judiciously. While analyzing performance during
product integration, we found that many synchronizations messages were
unnecessary. Not all the internal states are required to be synchronized with
standby.

3. Aggregate small synchronization messages into large message whenever
possible.

4. Design for timers carefully. Most of the timers need not be sent to standby;
only the timers that are required for external dependencies must be
synchronized.

5. All components must validate upon switchover to prevent system instability.

6 Conclusions

There are several HA middleware that provide proprietary solution for building highly
available applications. Many of these are often incomplete and cannot be adopted for
building real-world telecom applications without substantial modifications. While
developing on proprietary solution can be frustrating experience for engineers, the
maintenance and enhancements is also expensive. In addition, these proprietary HA
solutions cannot be ported to different hardware and software platform easily. SA
Forum’s AIS has standardized the cluster interface for developing highly available
application.

In this paper, we discussed our experiences with using SA Forum’s AIS
specification both for implementing a cluster as well as developing a real-world
application. We have also presented some basic assumptions that helped us to adopt
the specification without missing product milestones.

38 A. Kamalvanshi and T. Jokiaho

Our experience in making GGSN application highly available using SA Forum
specification has been challenging, but successful. The GGSN application is
challenging because of hot-standby requirement to prevent loss of existing sessions.
With about 20-30% overhead in performance, we saw flawless switchover when
active node failed, often less than 30 ms of traffic was lost. The outline of making
application redundant will serve as a guideline for prospective developers in
considering design trade-offs and reducing time to develop telecom application that
demand 99.999% availability.

References

1. 3GPP TS 23.060 General Packet Radio Service (GPRS) Service description; Stage 2,
v5.4.0.

2. 3GPP TS 29.060 GPRS Tunneling Protocol (GTP) across the Gn and Gp Interface, v5.4.0

3. 3GPP TS 29.061 Interworking between the Public Land Mobile Network (PLMN)
supporting Packet Based Services and Packet Data Networks, v5.4.0

4. 3GPP TS 32.215 Charging data description for the Packet Switched (PS) domain, v5.2.0

5. 3GPP TS 23.107 Quality of Service (QoS) concept and architecture, v5.7.0.

6. 3GPP TS 29.208 End to end Quality of Service (QoS) signalling flows, v5.3.0.

7. 3GPP TS 32.215 Charging data description for the Packet Switched (PS) domain, v5.2.0.

8. T.Jokiaho, F.Herrmann, D.Penkler, L.Moser: “Application Interface Specification of the
Service Availability Forum”, pp 14-16, Boards and Solutions Magazine, June 2003.

9. SA Forum Application Interface Specification AIS B.01.01

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 39 – 51, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Logical Data Protection and Recovery to Improve
Data Availability

Wei Hu

Oracle Corporation, 400 Oracle Parkway, Redwood Shores, CA 94065, USA
wei.hu@oracle.com

Abstract. Data availability is crucial to overall application availability. This
paper describes data failures and classifies them as either physical or logical.
Physical data failures such as data loss and corruptions are introduced in the I/O
layers; logical data failures are introduced in the application layer. Current data
protection techniques are geared towards physical data failures. This paper
reviews physical data protection techniques and their limitations. It then
introduces the concept of logical data protection and shows how applications
such as the Oracle database can use application knowledge to implement logical
data protection and recovery that are more effective than conventional physical
data availability technologies.

1 Data Availability

An important aspect of high availability is data availability. Data availability is the
extent to which an application’s data is available and correct – i.e., in a form that
allows the application to function. Data is not available when it is destroyed,
inaccessible, lost, physically corrupted, or logically corrupted. An application cannot
function without its data; highly available systems must therefore address data
failures. Data failures (or unavailability) can be caused by hardware failure, software
failure, human error (which includes malicious attack), and site failure.

Hardware failure can cause data loss and data corruption. Disk failures can cause
data loss. Data corruptions can occur when the hardware incorrectly modifies data
that is written or read back. Data corruption can be caused by faulty hardware and
firmware. Uncorrected memory errors can corrupt the I/O buffers. Even faulty cables
can corrupt the data that is transferred. In addition to improper modification of data,
other variations of corruptions are: misdirected write where a data block is written to
the wrong location and lost write whereby the storage subsystem acknowledged the
completion of a write that was actually not done.

Software failure can also cause data loss and data corruption. Every data failure
that is caused by hardware can also be caused by software. For example, bugs in file
system and I/O code can lose writes, overwrite parts of the data that is being written,
or write data to the wrong location. Another example of a software corruption is the
stray write in which data structures in memory are overwritten by another thread. As
the amount and complexity of software in the I/O subsystem grows, the probability of
software-induced data failures also increases.

40 W. Hu

Human error can account for up to 40% of unplanned application downtime [1].
Human error can cause all the data loss and corruptions caused by hardware or
software. For example, a configuration error such as setting up a swap file over the
same disk partitions that hold application data can cause data to be overwritten. This
has the same effect as a corruption caused by misdirected writes.

A site failure is when an entire data center is lost. When a site disaster occurs, all
data storage within a given geography is lost. This means that only data availability
techniques that are geographically separated are effective against this type of data
failure.

Even though data failures are relatively rare, they usually result in extended outage.
The outage due to data failures is usually much longer than that caused by machine or
process failure. Hours or even days of downtime are possible [2]. Applications that
need high availability must therefore address data failures.

2 Physical and Logical Data Failures

We characterize data failures as either physical or logical based on where the data
failure was introduced. We make this distinction because there are many solutions
that only address physical data failures. The following figure shows how we model an
application stack and the type of data failures.

C lien t (H um an P ro gram)

A p plica tio n S tack

L og ica l

P hy sical

F a ilu re T yp e

A pp lica tion

I/O
H ard w are

S o ftw are

Fig. 1. Logical and Physical Data Failures

The I/O layer includes the hardware (adapter cards, cable, disk array) and software
(file system, volume manager, and device driver). Applications such as databases use
the I/O layer services. The client is a human or program that uses the services provided
by the application layer.

A physical data failure is a data loss or data corruption that is introduced in the I/O
software or hardware. A logical data failure is a data loss or data corruption that is
introduced above the I/O software or hardware layers. We draw the boundary between
physical and logical at the interface between the application and the I/O system because
we want to describe the layering as seen from the application.

 Using Logical Data Protection and Recovery 41

Note that a failure in a layer is not necessarily caused by code in that layer. A logical
data corruption, for example, does not have to be caused by an application bug, it just
has to be introduced while we are executing application layer code. For example, a
memory fault that corrupts in-memory buffer used by the application would still cause a
logical corruption even though the cause is hardware.

A logical corruption cannot be detected by I/O layer checks. This is because the data
was already corrupted in the application layer by the time the data was passed to the I/O
layer. The I/O system has no way to distinguish valid data from invalid data. More
generally, a layer cannot detect errors introduced by layers above. An application, for
example, cannot detect human errors. If a database administrator (client layer) were to
issue a drop table command, the database (application layer) cannot always determine
whether the human specified the correct table.

3 Physical Data Availability Techniques

In this section, we analyze technologies available for addressing physical data failures.
Collectively, these techniques provide physical data availability. We start by discussing
techniques for preventing physical corruptions, then techniques for recovering from
physical data failure and site disaster.

Failure Solution

Data Loss
RAID

Backup/Restore
Checksum

Remote Snapshot

Data
Corruption

Backup/Restore
Snapshots

Continuous Backup

Site Disaster
Offsite Backup

Remote Mirroring

Fig. 2. Techniques for Physical Data Availability

3.1 Preventing Physical Data Failure

The primary means for preventing physical data loss is through redundant storage such
as RAID [3]. Cyclic redundancy checksums (CRC) are also used to detect corruptions
and error correcting code (ECC) memory is used to detect and repair errors [4]. These
techniques have greatly improved the reliability of the I/O subsystem and reduced the
frequency of data failures.

42 W. Hu

3.2 Recovering from Physical Data Failure

Backup/restore is the fundamental technique for recovering from physical data
failures. When a data failure occurs, a backup of the data is restored. The limitations
of using backups are data loss and restore time. After a backup has been restored, all
the changes that were made since the backup was taken are lost. The exception is with
applications such as databases that can use the transaction log to bring the backup to
the current time. Restore time is an issue because a backup must first be restored from
backup media before it can be used. Even with the use of on-disk backups instead of
tape, restore time for large amounts of data can be lengthy.

To minimize data loss in the event of a restore, it is desirable to have frequent
backups. Many storage vendors have optimized periodic backups so that they can be
taken rapidly with relatively small disk overhead. These periodic backups are
sometimes known as snapshots [5]. Snapshots can consist of full copies of the data
(e.g., a mirror within the storage array), or a partial copy that tracks only changes
since the last snapshot. Snapshots allow you to maintain multiple restore points to
which you can bring the data in the case of a physical data failure. To address the
issue of data loss after a restore, several continuous backup products [6,7] have
recently been introduced. These apply database like logging techniques to track
changes incrementally. This then allows you to return the data to any arbitrary point
in the past.

3.3 Handling Site Disaster

Storing backup copies of the data off-site is a way to ensure that the data can be
restored when the primary copy is unavailable. Remote disk mirroring can also be
done so that one of the mirror copies is a remote storage unit. The remote copy is
typically located in a data center that is not likely to be subject to the same disaster as
the primary site. For example, it might be across a continent or an ocean. The
geographic separation reduces the likelihood that a disaster that affects the primary
site would also affect the backup site(s).

Note that remote mirroring over long distances can degrade the response time of
the application because of propagation delays across long distances. In addition, for
disaster recovery, all the other components of the application (application, hardware,
networking) must also be available at the backup data center.

3.4 Limitations of Physical Data Protection Techniques

Physical data protection techniques provide protection against physical data failures.
However, they only provide partial protection against logical data failures. In
particular, physical data protection techniques can recover from, but cannot prevent,
logical data failures.

3.4.1 Physical Techniques Cannot Prevent Logical Data Failures
Physical data protection techniques cannot detect or prevent logical data corruptions.
This is because techniques such as RAID and checksums are physical checks. They
cannot validate the contents of the data. So if a logically corrupted block were written

 Using Logical Data Protection and Recovery 43

to a RAID device, the storage cannot detect that the data is invalid. This limitation
applies to all physical data protection techniques. For example, a storage array that is
remotely mirrored would ensure that a logically corruption would propagate bit-for-
bit to all remote mirrors. This is a serious limitation given the wide range of potential
logical data failures.

3.4.2 Physical Techniques Cannot Prevent Upper Layer Physical Data Failures
Significantly, physical data protection techniques cannot even prevent physical
corruptions that were introduced at a higher layer in the I/O system. Modern I/O
subsystems have become very complex. There are usually many layers of software,
firmware, and hardware that is involved in an I/O request. Some of these components
include: file system buffer cache, volume manager, device driver, host bus adapter,
storage area network switch, storage controller, and the hardware/software inside the
storage unit. A bug or failure in any of these components can cause a physical
corruption that would not be detected by lower layers of the I/O subsystem. For
example, RAID cannot correct a directory entry that has been corrupted by a file
system bug. From the perspective of the RAID device, the file system error is also a
logical failure.

3.4.3 Physical Techniques Are Not Optimal for Recovering from Logical Data
 Failures
Physical data protection techniques such as backup/restore and snapshots can be
applied to recover from logical data failure. So for example, if a file was overwritten
or accidentally deleted, a copy can be restored from backup. Physical data recovery
techniques, however, have many limitations. First, the recovery is done at the
granularity of the physical object (file, file system, disk, etc.). If only a subset of the
data were damaged, physical recovery cannot repair just the damaged part, it has to
restore the entire object. So if a database file were a terabyte in size and only a single
row was corrupted, a physical restore would bring back the entire terabyte; it cannot
restore just the row.

Doing file- or device-based recovery is not optimal because recovery takes longer
and you will lose more data. Recovery takes longer since you are usually restoring
more data than you need. Restoring an object typically means loss of data because the
backup does not contain changes made since the backup was taken. Because the
granularity is at the physical file or device, the data loss is also larger than required.
For example, restoring the entire file means that you will lose changes made to all the
records in the file even though only a single record is damaged.

In summary, physical data protection techniques are inadequate for applications
that require high levels of data availability.

4 Logical Data Availability Techniques

We now look at how logical data protection techniques can address the limitations
associated with physical data protection techniques. Logical data protection
techniques exploit application knowledge to offer better protection against data

44 W. Hu

failures and better recovery from data failures. We will use the Oracle database as an
example and show how it exploits knowledge of the logical structure of data to
provide improved data availability. Figure 3 shows some of the solutions that we’ll
cover in this section.

Objective Solution

Preventing
Logical
Data Failure

End-to-End Application Checksum
Standby Database

Data Corruption
Backup/Recovery
Flashback
Precision Repair

Fig. 3. Techniques for Logical Data Availability

4.1 Preventing Logical Data Failure

The main logical data failure prevention techniques are application level checksums
and logical replication.

4.1.1 End-to-End Application Checksum
Physical data protection technologies such as RAID and checksums are limited
because they only validate the data when it is in the I/O subsystem. These techniques
are ineffective against data that were corrupted prior to the initiation of the I/O
request.

Applications can achieve higher data availability by implementing their own
application level checksums. For example, when Oracle writes data, it performs a
series of logical and physical checks on the data to ensure integrity. As part of this, it
also stores checksum and other validation information in the data blocks. When the
data is read back, Oracle verifies the checksum and other validation information in the
blocks. If the block fails the checks, an error is raised. This detects I/O corruptions
and prevents bad data from being used. Microsoft Exchange Server has a similar
capability [8].

Conventional application level checksums can detect a corruption after the fact.
Oracle’s HARD (Hardware Assisted Resilient Data) [9] takes this further by

preventing I/O corruptions from making it to disk in the first place. Figure 4 shows
how this technology extends the range of validation all the way from the application
(the database) to the hardware.

Under the HARD initiative, Oracle worked with storage vendors to imbed
knowledge of Oracle block formats and checksums within storage arrays. When
Oracle data is written to a HARD-compliant storage device, the storage device can

 Using Logical Data Protection and Recovery 45

independently validate the integrity of the Oracle blocks as well as the locations to
which the blocks were destined. If the validation checks pass, the data is written to the
disks. If the validation checks fail, the write is not performed and an error is returned.
This ensures that corrupted data are never written to disk.

Application I/O

Application I/O

Compute
Checksum

Validate
 Checksum

Compute
Checksum

Validate
 Checksum

Range of Protection

Range of Protection

Fig. 4. End-to-end Application Checksum

The end-to-end application checksum can prevent a whole class of data failures. It
protects against data corruptions introduced by any subsystem between the
application (Oracle) and the disk array, it prevents misdirected writes, it also prevents
overwrites of Oracle files by other applications.

The end-to-end application checksum also protects data during direct disk-to-tape
transfers. Certain disk arrays can directly transfer data to tape drives without host
intervention. This is useful for high performance backups. A corruption in this case is
very severe as it means that the backups that you’ll need to recover from other data
failures would be corrupted. If the tape device is HARD compliant, it can directly
validate the integrity of the data that it is receiving.

4.1.2 Standby Database
Application-maintained replicas, such as Oracle Data Guard [10,11] and Sybase
Replication Server [12], are another powerful means for protecting data against both
physical and logical failures. A standby database is a copy of the database that is kept
up-to-date with changes as they are made on the primary database. Figure 5 shows
how it works in a 2 database configuration:

1. A change is made on the primary database
2. The change is captured in the redo log
3. The log is shipped to the standby database
4. The change described in the log is applied to the standby database

46 W. Hu

If the primary database fails, the standby database can become the primary and
continue operation. A primary may have multiple standby databases, each of which
can be at a different location. A standby database that is geographically remote from
the primary database can also offer protection against site failure.

Network

Database

Primary
Database
Process

Log

Standby
Database
Process

Fig 7 Standby Database Operation

1

2

3

4

Log

Database

Fig. 5. Standby Database Operation

A standby database can be thought of as a remote mirror. As such, it can protect
against the same physical data failures as storage-level remote mirroring. A standby,
however, is more resilient against logical corruptions. This is because of how changes
are propagated and applied at the standby databases. A storage-level remote mirroring
solution sends description of the physical blocks that are changed. So if a logically
corrupted block were written to the primary mirror, the remote mirroring
software/firmware will ensure that the corruption is replicated bit-for-bit at the remote
mirror.

Oracle Data Guard, on the other hand, receives a logical description of the change
from the primary database. The redo log contains a great deal of contextual
information such that if the log is corrupted or if the blocks being modified are
inconsistent with the redo log record, the change application (described in step 4
above) would fail. This prevents many logical corruptions from propagating and
corrupting the copy of the data on the standby.

4.1.3 Improving the Effectiveness of a Standby Using an Apply Lag
One can improve a standby database’s effectiveness by building in an apply lag. In
this mode, changes are still shipped immediately to the standby; however, the changes
are not applied until after a configuration delay. Note that the lag does not mean that
the standby will lose data after a failover. This is because there is no delay on
receiving the changes at the standby, just on when these changes are applied. Since all
the changes are available on the standby database, no data would be lost if the
primary database were to fail.

The lag gives the customer a chance to react to human error or application
corruption before the standby database is affected. For example, if one accidentally
deleted (dropped) a table on the primary database, the delay means that the operation

 Using Logical Data Protection and Recovery 47

would not be immediately carried out at the standby. This delay gives the system a
chance to discover the error and immediately stop the standby apply. You can then
apply the changes up to the point of the error and still have a good copy of the
database.

Network

Database

Primary
Database
Process

Log

Log

Standby
Database
Process1

2 3 4
Log

Log

Log

Apply
Lag

Database

Fig. 6. Using Standby with Apply Lag

The use of a lag comes with a trade-off in safety vs. failover time. For maximum
data protection, customers like to configure a long apply lag. This gives them more
time to detect and respond to a data failure on the primary before the same data failure
also makes it to the standby. But a long apply lag means that there would be more log
data on the standby database that are not yet applied. When the standby takes over
from a primary database after the primary has failed, the standby needs to apply all
the unapplied logs before accepting new transactions. This increases the failover time.
Another problem with the apply lag is that queries on the standby database do not see
current data.

One way customers have addressed this problem is to have multiple standby
databases each configured with a different lag. For example, a customer might have
several standby databases that are 5 minutes, 30 minutes, 2 hours, and 1 day behind
the primary. When the primary encounters a data failure, they activate the standby
with the least lag that doesn’t have the same corruption. This is analogous to the way
some customers keep multiple snapshots of their data. The difference is that all the
standby ‘snapshots’ are continuously brought up to date (within the constraint of the
apply lag).

Oracle Data Guard does not have this trade-off because of the flashback database
feature. Flashback database [13,14] allows one to rapidly undo recent changes that
were made. It does so by undoing all the changes in reverse order. With flashback
database enabled, a standby database would immediately apply the changes as they
are shipped from the primary database. This way, the standby database is current as of
the last change and incurs no delay during a failover. In case of a human error or a

48 W. Hu

logical corruption on the primary (conditions that previously were handled by the
apply lag), the standby would simply flashback the database to a point before the error
took place.

4.2 Recovery from Logical Data Failure

End-to-end application checksum validation such as HARD and application-
maintained replicas such as the standby database can prevent data failure due to
human error and logical corruptions. Nevertheless, there are still situations in which
one needs to recover from a logical data failure. This section discusses some of these
techniques.

4.2.1 Logical Backup and Recovery
Logical backup and recovery offers finer granularity than physical backup and
recovery. For example, database oriented backup and recovery can deal with entire
databases, tablespaces, tables, database blocks, and even rows. For backups, control
over the granularity means that you can backup different types of data differently. It
allows you to perform backups faster and create smaller backup sets. Logical recovery
is where application knowledge becomes really important; it can significantly reduce
downtime. With Oracle Recovery Manager [15], for example, if only a few blocks in
a database are corrupted, you can restore just the damaged blocks and then apply the
logs to bring those blocks current instead of restoring and recovering an entire
datafile.

Logical recovery also provides much finer control over the point of time to which
to recover the data. A database, for example, can use its transaction logs to re-apply
the changes made since time of the backup or snapshot. This allows databases to
recover to any point in time, given a backup as a starting point. Thus most recoveries
would not lose data.

4.2.2 Application-Level Continuous Backups
Oracle has similarly augmented its backup and recovery capabilities with flashback
technology. Flashback database is like a continuous backup for the database. To
recover the database to a prior point in time, flashback database replays the log in
reverse, therefore undoing the operations in reverse order. Unlike conventional
recovery, there is no need to restore a backup first. Consequently, flashback is
extremely fast when the objective is to undo a mistake or corruption in the recent past.

Flashback database is more efficient than physical continuous backups because
flashback database can take advantage of the regular database logs. Like physical
restore points, flashback database can also have named points to which you can bring
the database back. Because these restore points simply name points in the existing log
stream, flashback database restore points do not consume as much resources as
conventional split mirror restore points.

Flashback database is a database level continuous backup capability. Some
research work has also been done on undoing data failures in mail servers [16].

 Using Logical Data Protection and Recovery 49

4.2.3 Precision Data Repair
Application-level data repair can achieve extremely fine-grained data repair. A good
example of using application logic to perform fine-grained data repair is an Oracle
feature called flashback query [13]. Flashback query takes advantage of the Oracle
database’s multi-version consistency scheme in which the system maintains metadata
so that it can reconstruct versions of data in the past. The use of flashback query is
best illustrated by an example:

Suppose someone erroneously deleted all the rows corresponding to people who
reported to the manager named Jon Smith. That information is now gone from the
database.

To get a list of the people that existed at that point in time, one can issue a query
similar to the following:

SELECT * FROM employee AS OF TIMESTAMP
 TO_TIMESTAMP('2004-12-04 02:45:00',
 'YYYY-MM-DD HH:MI:SS')
 WHERE manager = 'JON.SMITH';

This would return a list of employee that reported to Jon Smith at that point in time.
Using this information, the data can be reinserted into the database.

Flashback query therefore allows you to find the exact version of the data that you
want. Once this is found, it can be reinserted into the table. Since it is expressible as
SQL, you can use the full query capabilities to identify the data that was lost and
reinsert them.

Along with flashback query, Oracle also supports:

• Flashback version query that gives you all the versions of a row between two
times and the transactions that modified the row

• Flashback transaction query that allows you to see all the changes that were
made by a transaction

The combination of the various flashback capabilities makes it practical to surgically
repair corrupted data rapidly with minimal data loss. These capabilities cannot be
achieved by physical data recovery techniques.

5 Conclusion

This paper makes the argument that logical data protection and recovery techniques
are more powerful and offer higher data availability than traditional techniques that
work at the physical level. Logical data protection and recovery accomplish this by
exploiting application-level knowledge. Physical data protection cannot provide this
higher level of data availability. For example, RAID can protect against disk failures
but cannot prevent logical corruption or human error. Physical data recovery
techniques also have shortcomings in terms of recovery time and data loss.

Fortunately, every physical data protection technique has logical counterpart.
Figure 7 summarizes the corresponding physical and logical techniques.

50 W. Hu

Physical Logical

RA ID
Checksum

H ARD
(End-to-End Application Checksum)

Backup/Restore
Snapshots
Continuous Backup

Backup/Recovery to A rbitrary Points
Precision Data Repair
Restore Point
Flashback D atabase

Data Protection

Data Recovery

Site Disaster
O ffsite Backup /
Restore
Rem ote M irrors

O ffsite Backup/Recovery
Standby D atabase

Fig. 7. Physical and Logical Data Protection Techniques

Each of the logical data availability techniques listed is more powerful than its
corresponding physical data availability technique. By taking advantage of
application knowledge, logical data availability techniques can detect and prevent
more errors and offer more and finer-grained data recovery options.

There is still a place for physical data protection techniques. The Oracle database is
exceptional in the breadth of logical data protection techniques that it supports. Most
applications do not have similar capabilities. These applications must therefore rely
on physical data protection techniques. Because physical data protection techniques
do not have application knowledge, they can support all applications. Even though it
is not as effective as logical data protection, physical data protection is the only
choice when there are no logical data protection techniques for the application under
discussion.

References

1. Donna Scott, Continuous Application Availability: Pipe Dream or Reality, Gartner Data
Center 2003, (Las Vegas, NV), page 9, 8-10 December 2003.

2. Tim Wilson, Ebay retrenches: Devastating outage exposes lack of redundancy, need for
simplicity, InternetWeek.com, June 1999.
Available at http://www.internetweek.com/lead/lead061799.htm.

3. David A. Patterson, Peter Chen, Garth Gibson, and Randy H. Katz. Introduction to
redundant arrays of inexpensive disks (RAID). Spring COMPCON'89 (San Francisco,
CA), pages 112-17. IEEE, March 1989.

4. W. Wesley Peterson and E.J. Weldon, Jr., Error-Correcting Codes, 2nd edition, MIT
Press: Cambridge, Mass., 1972.

5. Dave Hitz, James Lau, Michael Malcolm, File System Design for an NFS File Server
Appliance, Proceedings of the USENIX Winter 1994 Technical Conference, January 1994.

6. Evan Koblentz, Continuous Backup, eWeek, June 23, 2003.
7. Symantec’s Nortan GoBack 4.0 data sheet.

Available at: http://www.symantec.com/goback.

 Using Logical Data Protection and Recovery 51

8. Understanding –1018 Errors. June 2001. Available at: www.microsft.com/technet.
9. Oracle Hardware Assisted Resilient Data (HARD) Initiative, 2004, available at

http://www.oracle.com/technology/deploy/availability/htdocs/HARD.html
10. Oracle Data Guard in Oracle Database 10g – Disaster Recovery for the Enterprise,

December 2003, available at: http://www.oracle.com/technology/deploy/availability.
11. Oracle Data Guard Concepts and Administration 10g Release 1 (10.1), Part Number

B10823-01, December 2003, Oracle Corporation.
12. Replication Server 12.6 Features, 2003, available at: http://www.sybase.com.
13. Flashback Technology, 2004, available at:

Available at: http://www.oracle.com/technology/deploy/availability.
14. Oracle Database Concepts 10g Release 1 (10.1), Part Number B10743-01, December

2003, Oracle Corporation.
15. Oracle Database Backup and Recovery Basics 10g Release 1 (10.1), Part Number B10735-

01, December 2003, Oracle Corporation.
16. Aaron B. Brown and David A. Patterson, Undo for operators: Building an Undoable E-

mail Store, Proceedings USENIX Annual Technical Conference, San Antonio, TX, 2003.

Contract-Based Web Service Composition
Framework with Correctness Guarantees

Nikola Milanovic

Humboldt University, Berlin
milanovi@informatik.hu-berlin.de

Abstract. We present formal and practical foundations for Web ser-
vice composition framework with composition correctness guarantees.
We introduce contractual composition model based on two isomorphic
description models: Contract Definition Language (XML) and abstract
machines (formal notation). Composition operators (patterns) are used
to perform composition which is then formally verified with respect to
properties described in service contracts. We also describe Java-based
implementation of the system, concentrated around Sun’s Java Web Ser-
vices Development Pack (JWSDP).

Indexed Terms: Web services, composition, correctness, contracts.

1 Introduction

Web services are emerging as a replacement and/or additional paradigm for
the component-based software development. However, Web services aim much
further to become not only a new Object Request Broker architecture, but a uni-
fying paradigm for communication among heterogenous groups of software and
hardware entities. Web service architecture has three layers: description and ba-
sic operations (publication, discovery, selection and binding), composite services
(coordination, conformance, monitoring and quality of service) and managed ser-
vices (certification, rating, liability). Unfortunately, only the bottom layer has
been standardized (WSDL, UDDI and SOAP). We are seeking a solution for
the second layer dealing with Web service composition. In the next section we
discuss the ideas of existing approaches and then present formal foundations and
implementation of a contract-based composition framework.

2 Related Work

The composition layer comprises four properties: coordination, conformance,
monitoring and quality of service. Coordination determines which services par-
ticipate in composition and how they exchange messages. Conformance estab-
lishes composition correctness, while monitoring basically deals with error and
exception handling. Finally, quality of service offers metrics to compare different
compositions with respect to nonfunctional properties.

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 52–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Contract-Based Web Service Composition Framework 53

We examined several approaches for Web service composition: Business Pro-
cess Execution Language for Web Services (BPEL4WS) [5], Semantic Web
(OWL-S) [6,11,17], Web component [19], π-calculus [12], Petri Nets [10], model
checking [9] and finite state machines [3,4]. Our detailed survey of these solutions
and how they relate to the four key composition properties can be found in [15].

The main problem with ’industrial’ approaches (BPEL, OWL-S) is the lack
of support for verifying composition correctness. Both approaches (and BPEL in
particular) offer implementation languages that are simply too expressive for any
kind of formal validation. On the other hand, there are other, more formal and
abstract approaches (e.g., π-calculus or finite state machines). However, they
are often difficult to apply in real-world scenarios, and some of them face serious
scalability problems. Our intention is to provide formal and practical foundations
for a contract-based composition approach with correctness guarantees.

3 Contracts and Abstract Machines

The concept of design by contract was first introduced in [13] to facilitate compo-
nent reuse. A contract describes, in a standard way, what a component expects
from its clients and what it delivers if those requirements are met. We propose
to use contracts as non-functional (QoS) extension of WSDL description.

3.1 Contract Definition Language (CDL)

We assume that messages and port bindings are already defined, separate
(WSDL) or as a part of the service contract. The contract itself must provide
information that is related to non-functional aspects of the service execution.
However it should not include implementation details but semantic informa-
tion only: what a service will deliver and under which conditions it will execute
correctly.

The root section of CDL schema (Figure 1a) comprises organization, types,
location, method and event elements, as well as several basic attributes: uri,
name, description, price, state information, version and port. The organization
element is introduced to maintain backwards compatibility with Universal De-
scription, Discovery and Integration (UDDI) directories. Therefore, every ser-
vice must belong to an organization that publishes it. For each organization it is
possible to define name, description (keywords), classification and primary con-
tact. The types element describes complex types that a service supports. It is
used when a service accepts or returns non-primitive types (e.g., object of come
custom class), and clients should be able to construct/deconstruct them appro-
priately. The location element is introduced to support location-based services.
It allows for definition of country, city, street address and GPS coordinates. The
event element declares all events that a service supports. For each event, its
native name is listed, along with a reference and a common environment excep-
tion it is mapped into (if available). Finally, the method element describes one
or more service methods.

54 N. Milanovic

Inside the method element we can specify information about parameters,
persistent resources, invocation, pre-conditions, post-conditions and invariants,
events, assertions, classification and method location. For each parameter it is
possible to define name, type, restriction and initialization. Furthermore, con-
stants and sets (complex types) that a method understands can be listed. Invo-
cation information is related to component creation and execution (synchronous
or asynchronous). Pre-conditions, post-condition and invariants share the same
structure (Figure 1b).

Pre-conditions are linked to exported methods and determine obligations of
a client. A method is guaranteed to work correctly if and only if a client satisfies
pre-condition. Post-condition describes what a method guarantees, if precondi-
tion holds. Invariants are properties that must hold before and after invocation of
each exported method. They describe general, static properties of a service. The
properties that can be described are: rendering, logging, security, dependability
(transactions, replication, check-pointing, timeout and exceptions), performance
and parameters.

a) b)

Fig. 1. The root contract structure

We shoved in [16] that it is possible, to some extent, to automate extrac-
tion of defined properties from Java classes and Enterprise Java Beans. We also
identified the benefits that early contract inclusion has on the typical software
lifecycle.

Contract-Based Web Service Composition Framework 55

3.2 Modeling Services as Abstract Machines

Our main goal is to support not only reuse, but composition of Web services.
CDL syntax offers a richer set of description primitives compared to WSDL,
that can be used for specifying relevant non-functional properties. Verification
of composition correctness, however, requires a formal approach.

Since contracts, as we presented them so far, are just plain text (XML)
files, it would be very difficult, if indeed possible, to judge correctness of their
composition. The first problem we would be faced with is actual definition of
correctness. What does it mean for a contract to be correct, apart from sat-
isfying XML requirements of being well-defined and well-formed? How can we
judge whether two or more contracts are compatible or not conflicting with each
other? How to define relations ”compatible” and ”conflicting”? Finally, how to
perform actual composition when working on text files? In order to be able to
answer these questions, we introduce a second form for expressing Web service
contracts: abstract machine notation (AMN). We need the XML notation in or-
der to transport contracts over a network (interoperability), while AMN serves
the purpose of giving contract elements formal mathematical treatment.

Abstract machines are specified using Abstract Machine Notation. Details
on AMN can be found in [1]. We give a short overview of AMN principles. An
element, which can be a class, a component, or a Web service, is represented
as an abstract machine. It is characterized by statics and dynamics. The statics
corresponds to the definition of the state, while the dynamics corresponds to the
operations:

MACHINE M(X,x)
CONSTRAINTS C
CONSTANTS c
SETS S; T={a,b}
PROPERTIES P
COMPLEX Cx
VARIABLES v
INVARIANT I
ASSERTIONS J
INITIALIZATION U
OPERATIONS
u1 <- O1(w1) = PRE Q1 THEN V1 END
...
un <- On(wn) = PRE Qn THEN Vn END
END

This is a parameterized abstract machine having free dimensions X (set)
and x (scalar). CONSTRAINTS describes conditions on machine parameters. SETS

contains finite or named sets that the machine can use, while CONSTANTS de-
scribes constants that the machine understands. PROPERTIES takes form of con-
joined predicates specifying invariants involving constants and sets. VARIABLES

lists state variables, and INVARIANT describes static properties of the machine,
that must be preserved before and after each operation. ASSERTIONS is deducible

56 N. Milanovic

from PROPERTIES and INVARIANT, and exists purely to ease the proving of machine
correctness. INITIALIZATION initializes state variables. OPERATIONS lists operations
of an abstract machine, with pre-conditions (PRE) and post-conditions (THEN).

Operation body of an abstract machine modifies a machine state. For ex-
pressing formally how such modification takes place, we will be using logical
predicates relating the values of state variables just before the operation is in-
voked to the values just after the operation completes. The method we use is
called substitution. Let P be a formula, x be a variable and E an expression,
then the following denotes the formula obtained by replacing (substituting) all
free occurrences of x in P by E:

[x := E]P

If S is a substitution, and I is a formula, we write that substitution S pre-
serves I in a following way:

I =⇒ [S]I

This expression says that if the invariant I holds then the substitution S
is guaranteed to preserve the same invariant. We now introduce more complex
substitutions.

– Pre-conditioned substitution: If P is a pre-condition and S is the substi-
tution guarded by this pre-condition, then pre-conditioned substitution is
[P |S]R ⇐⇒ P ∧ [S]R. This substitution can also be noted as PRE P THEN S
END.

– Multiple simple substitution: Often we have to perform simultaneous substi-
tution (multiple simple substitution) [x, y := E, F]P ⇐⇒ [x := E][y := F]P .
It can be expressed also as x:=E || y:=F.

– Bounded choice substitution: It is used when we have to express a choice
between two or more substitutions. It is denoted with [S�T]R ⇐⇒ [S]R ∧
[T]R, and can also be expressed with CHOICE S OR T END.

– Guarded substitution: A substitution can be guarded by a predicate using
implication [P =⇒ S]R ⇐⇒ (P =⇒ [S]R). It can be denoted IF P THEN S
END.

– Conditional substitution: Combination of bounded choice and guarded sub-
stitution is called conditional and is defined IF P THEN S ELSE T END ⇐⇒
(P =⇒ S)�(¬P =⇒ T).

– Empty substitution: A substitution that performs nothing for the target
post-condition is empty substitution [skip]R ⇐⇒ R.

– Multiple generalized substitution: Any combination of previously defined
substitutions can be performed simultanously (multiple generalized substi-
tution) using the same notation, e.g., S||(P |T) = P |(S||T), S||(T�U) =
(S||T)�(S||U), S||(P =⇒ T) = P =⇒ (S||T).

– While substitution: A situation where, if a predicate P holds, substitution
S is iteratively executed, is denoted with WHILE P DO S END.

Contract-Based Web Service Composition Framework 57

Mapping from CDL to AMN. We have presented two notations for describ-
ing Web service contracts. During service exploitation there will be times when
we will have to switch between them:

– When composing two services, their CDL descriptions will be transferred
into abstract machines to allow for formal treatment of their properties.

– When new service is composed it is constructed by merging abstract ma-
chines of the constituent services, thus producing another abstract machine.
In order to make this service available to others and to be able to transport
its specification over a network, abstract machine has to be transferred into
CDL description.

It can be seen that transformation between CDL and AMN has to be bidirec-
tional. However, since this transformation is linear, once we know how to do it
one way, the other way is trivial. The mapping algorithm works as follows:

1. Machine name is constructed from serviceName attribute of the contract
element. All other attributes of the contract element, as well as all child
elements and attributes of the organization and location elements are
mapped into CONSTANTS clause.

2. The types element is mapped into COMPLEX clause of abstract machine.
3. The event element is mapped into CONSTANTS clause.
4. For each method element, the following is performed:

(a) State variables are built from properties in invariant, precondition,
post- condition elements. To this are added all method parameters.

(b) All sets defined in the set element are added to the SET clause.
(c) Constants from the constants element are added to the CONSTANTS

clause.
(d) The INVARIANT clause is defined in term of conjoined predicates involving

state variables, and is mapped directly from the invariant element. The
INVARIANT clause must contain enough conjuncts to allow for the typing
of all state variables.

(e) The PRE clause is mapped directly from precondition element. State
variables designating input parameters must have constraints (or types)
defined in this clause.

(f) Operation body (postcondition, or THEN clause) is constructed by con-
joining substitutions from the postcondition element. All output pa-
rameters must have properties (or types) described in this clause.

(g) All state variables that have initialization element defined, are added
to the INITIALIZATION clause. Additionally, those that are defined as
"INOUT" are added to the list of machine formal parameters.

(h) The content of assertion element (if exists) is added to the ASSERTION
clause in form of conjoined predicates.

(i) The resource, invocation and event-ref elements are of no interest
for composition semantics, and are thus not transferred into AMN. They
are used for maintaining internal consistency of composition process.

58 N. Milanovic

4 Service Composition

We identify four basic patterns (operators) for service composition: sequence,
choice, parallel and loop. We show how to construct composite abstract machine
clauses for each case and then discuss verification of composition correctness.

4.1 Sequential Composition

The sequence operator (Figure 2a) executes two (or more) services in an ordered
sequence. We denote sequential composition of services A and B with C = A�B.
Outputs of the left operand (A) become inputs of the right operand (B). The
clauses of the resulting abstract machine are calculated:

– SETS, CONSTANTS, and VARIABLES clauses are concatenated
– PROPERTIES, INVARIANT, and ASSERTION clauses are conjuncted
– OPERATIONS clause is constructed by performing substitution of the left

operand, then substituting input state variables of the right operand with
the output state variables of the left operand, then performing substitution
of the right operand, while conjuncting preconditions:

OPERATION outputB ← C(inputA)
PRE PA ∧ PB

THEN SA ; inputB := outputA ; SB END

Here outputB is a set of output state variables of the right operand, inputA
is a set of input state variables of the left operand, C is the name of a new
(composite) operation, inputB is a set of input state variables of the right
operand, and outputA is the set of output state variables of the left operand.

– INITIALIZATION clauses are concatenated, and multiple composed if needed.

M2

M1

S2

S1P1

P2

I1

I2

P S

I

M1 M2
P1 S1

P2

S2

I1 I2
P S

I

a) b)

Fig. 2. Sequence and Choice Patterns

4.2 Parallel Composition

Parallel composition executes two (or more) services concurrently. We allow two
subtypes of this pattern: parallel composition with communication (Figure 3a)
and without communication (Figure 3b). In the former case, concurrent services
can communicate with each other, for the purpose of synchronization of some
state variables. It can be used when a certain decision has to be reached after

Contract-Based Web Service Composition Framework 59

parallel processing has been performed, e.g., choosing result of one service and
discarding the other. Only operators of the relational algebra are allowed for the
state variables upon which the synchronization is performed. We do not allow
any kind of result aggregation, since it would needlessly complicate composition
pattern. If data aggregation needs to be performed, additional service should be
created and then sequentially composed to the parallel composition. In the latter
case (no communication), there is no communication / synchronization between
concurrent services.

Parallel composition with communication is denoted with ‖P (c), where c are
state variables that are being used for synchronization and P is the predicate
evaluated upon them, while parallel composition without communication is de-
noted with ‖: C = A ‖P (c) B and C = A ‖ B. The clauses of the composed
abstract machine are constructed:

– SETS, CONSTANTS, and VARIABLES clauses are concatenated
– PROPERTIES, INVARIANT, and ASSERTION clauses are conjuncted
– OPERATIONS clause is constructed differently for composition with and with-

out communication:
• For parallel composition without communication, pre-conditions are con-

juncted and substitutions are performed simultaneously (using multiple
general substitution):

OPERATION outputC ← C(inputC)
PRE PA ∧ PB

THEN SA ‖ SB END
Here outputC = outputA ∪ outputB and inputC = inputA ∪ inputB.

• For parallel composition with communication, pre-conditions are con-
juncted and substitutions are performed simultaneously. Afterwards,
predicate P is evaluated on a subset of state variables c, resulting in
choice of output of only one service:

OPERATION outputC ← C(inputC)
PRE PA ∧ PB

THEN SA ‖ SB

IF Pc THEN outputC = outputA ELSE outputC = outputB END
– INITIALIZATION clauses are concatenated, and multiple composed if needed.

B

A

SB

SA

IA

IB

SC

IC

B

A

SB

SA
PAPA

PBPB

IA

IB

P(c)PCPC
SC

IC

a) b)

Fig. 3. Parallel Pattern

60 N. Milanovic

4.3 Choice Composition

The choice pattern (Figure 2b) represents a composition that behaves as either
of its constituents services. It is similar to parallel composition pattern with
communication, but it is non-deterministic. It is furthermore restricted to com-
patible services in sense of input parameters, because it is used when it is known
in advance that some of the available services can perform the requested opera-
tion, without the need to know which one will do so in a particular instance. The
most general example is sending the same request to many services and accept-
ing the results from the one that first completes its execution. This composition
pattern is denoted with C = A	B. The machine resulting from applying choice
pattern is constructed as follows:

– SETS, CONSTANTS, and VARIABLES clauses are concatenated
– PROPERTIES, INVARIANT, and ASSERTION clauses are conjuncted
– OPERATIONS clause is constructed by conjoining preconditions and connect-

ing substitutions by bounded choice substitution operator:

OPERATION outputC ← C(inputC)
PRE PA ∧ PB

THEN SA�SB END

Here outputC = outputA ∨ outputB, which is implied in SA�SB.
– INITIALIZATION clauses are concatenated, and multiple composed if needed.

4.4 Looping

Looping pattern supports execution of the same service repeatedly, until a certain
condition is fulfilled. Based on the condition controlling the loop, we define unary
(Figure 4a) and binary loop (Figure 4b): C =�P (e) A(e) and C = W (e) �P (e) A.
In both cases, looping is controlled by predicate P evaluated on the variable e.
Service is executed until P (e) becomes false. In the unary pattern, e is a state
variable of service A, and is changed in every iteration by the execution of A.
Therefore, service A controls the loop exit condition. Since this is the loop with
the condition on top (exit condition is evaluated prior to execution), variable e
must be in the INITIALIZATION clause to enable the first loop iteration. In the
binary pattern, there is another service W that controls P (e). In this case we
do not allow service A to influence the loop exit condition. Here, service W is
executed prior to A and will set value of e, which therefore does not have to
be initialized. The composite machine is constructed as follows for the unary
pattern:

– The clauses SETS, CONSTANTS, VARIABLES, PROPERTIES, INVARIANT, ASSER
TION, and INITIALIZATION are kept unchanged. Variable controlling loop
exit (e) must appear in the INITIALIZATION clause.

– Operation body is constructed by enclosing original substitution in a WHILE
DO block, controlled by P (e):

Contract-Based Web Service Composition Framework 61

OPERATION outputC ← C(inputC)
PRE PA

THEN WHILE P (e) SA(e) END

Here ouptutC = outputA and inputC = inputA.

For the binary pattern, another service W controls exit variable:

– SETS, CONSTANTS, and VARIABLES clauses are concatenated
– PROPERTIES, INVARIANT, and ASSERTION clauses are conjuncted
– Operation body is constructed by conjoining preconditions, and enclosing

both substitutions inside a WHILE DO:

OPERATION outputC ← C(inputC)
PRE PA ∧ PW

THEN SW (e)
WHILE Pe

SA; SW (e) END

– INITIALIZATION clauses are concatenated, and multiple composed if needed.

A(e) A
SA SA

PA PA

PC

PC

IA IA

P(e) P(e)

SC SC

IC
IC

a) b)

1 1

skip skip

0 0C C

W(e)
PW SW

IW

Fig. 4. Loop Pattern

4.5 Correctness Verification

Once an operator has been applied, composition result has to be verified. The
whole composition process then proceeds as follows:

– Merging of two (or more) abstract machines using composition operator.
– Type checking of the resulting abstract machine.
– Proving correctness of the resulting abstract machine
– Establishing correct termination of the resulting abstract machine

Type Checking. Suppose that we have an expression E and a set s such that
E ∈ s. Suppose further that there exists a set t such that s ⊆ t. Then it follows
that E ∈ t. We can continue by including t in a larger set u, and then E will
also belong to u. The purpose of type-checking of the abstract machine is to
provide an upper limit for such set containment for all predicates. This upper
limit is called a super-set of s and is at the same time the type of E. The function

62 N. Milanovic

check is introduced like ENV check (P), and for the predicate P means that
within the environment (antecedent) ENV predicate P type-checks. Referring to
the abstract machine from Section 3.2, the type checking consists of the following
requirements:

– X, x, S, T, a, b, c, v are all distinct
– Operation names of O1...On are all distinct
– S, T, a, b, c, v are not-free in C
– v, X, x are not-free in P
– X, S, T, a ∈ T, b ∈ T check (∀x(C ⇒ ∀c(P ⇒ ∀v(I ∧ J ⇒ U ∧ O))))

The last expression means that first universally quantified scalar parameters
and their constraints are checked, then universally quantified constants and their
properties, then universally quantified variables and their invariant, and finally
initialization and operations.

Proof Obligation. After type checking has been performed, the resulting ma-
chine must be proved correct. The purpose of this is to establish the following:

– Composite initialization must establish composite invariant
– Composite assertion must be deducible from composite properties and in-

variant
– Composite operation must establish composite invariant

Formally, and again referring to the machine from Section 3.2 we can write it:

C ∧ P ⇒ [U]I

C ∧ P ∧ I ⇒ J

C ∧ P ∧ I ∧ J ∧ Q ⇒ [V]I

Correct Termination. After proving machine correct, we have to see whether
it will terminate correctly and whether it is feasible. For a given substitution S
the construct trm(S) denotes the predicate that holds when substitution S ter-
minates, that is, establishes its post-condition. By requiring that all operations
terminate, we ensure elimination of deadlocks. Another construct is defined,
abt(S) which denotes aborted substitution, that is, substitution that does not
establish anything. Therefore it can be said that abt(S) ≡ ¬[S]R for any pred-
icate R, and accordingly trm(S) ≡ ¬ abt(S). We define correct termination as
trm(S) ⇐⇒ [S](x = x). Correct termination for substitutions is established in
the following way: trm(P |S) ⇐⇒ P ∧trm(S), trm(P�T) ⇐⇒ trm(S)∧trm(T),
trm(P ⇒ S) ⇐⇒ P ⇒ trm(S).

We also check whether the composite operation is feasible, with respect to
the guarded substitution. The feasible operation will establish one, or none post-
condition. Non-feasible operation, on the other side, will be able to establish any
post-condition. We define feasibility as fis(S) ⇐⇒ ¬[S](x �= x). The feasibility

Contract-Based Web Service Composition Framework 63

of the standard substitutions is calculated in the following way: fis(P |S) ⇐⇒
P ⇒ fis(S), fis(P�T) ⇐⇒ fis(S) ∨ fis(T), fis(P ⇒ S) ⇐⇒ P ∧ fis(S).

Correct termination for loop operator is outside the scope of this general
paper. Suffice to say that we introduce two separate elements in the loop body:
invariant and variant (exit condition). We currently limit the evaluation of the
exit condition to natural number and observe its monotonicity:

trm(WHILE P DO S INVARIANT I VARIANT V END) ⇐⇒
(∀x · (I ⇒ V ∈ N)) ∧ (∀x · (I ∧ P ⇒ [n := V][S](V < n)))

5 Implementation

In previous sections we formed formal foundations needed for developing Web
service composition framework. Now we address some implementation issues,
namely system organization, communication, service directory and state man-
agement. Composition engine comprises four main parts: client application, basic
administrative services, database for storing CDL contracts, one or more appli-
cation servers/containers with deployed services. Service descriptions are stored
in a relational database. Client applications access basic functionalities of the
engine via Web service middle layer. This middle layer connects to the under-
lying database, as well as to application servers in which target services are
deployed. Clients cannot access database or application servers directly. There-
fore, most of the engine’s tasks are accomplished in the middle layer. The engine
is implemented using Java and Java-related technologies.

5.1 Client and Basic Administrative Services

Client part is realized as Swing application connected to the middle Web service
layer that provides administrative functions and operations. Middle layer offers
the following operations: publishing new service to directory, modifying and
deleting existing service from directory, searching for services, composing new
services using existing ones, invoking single or composed services.

In order to achieve these tasks, middle layer communicates with underly-
ing relational database (directory) and application servers hosting target Web
services that users want to invoke and/or compose. Since entire application is
Web service-based, the communication is realized using Sun’s Java Web Services
Developer Pack (Sun JWSDP) [14].

We found two technologies provided within JWSDP very useful: Java Ar-
chitecture for XML Binding (JAXB) and Java API for XML-based Remote
Procedure Calls (JAX-RPC). Since CDL schema is very large, encompassing
more than 50 complex entities, we need a powerful yet flexible mechanism of
translating XML document into Java object representation. JAXB offers a com-
plete solution for transferring XML content into Java object representation and
vice versa. JAXB operation is based on three actions: binding XML schema
to Java content classes, unmarshalling XML document into content classes and

64 N. Milanovic

marshalling content classes into XML document. At the beginning CDL schema
is compiled with JAXB binding compiler. This action produces a set of Java
content classes that reflect the contract structure. The process of unmarshalling
takes service contract as input and produces set of instantiated Java content
classes populated with data parsed from XML document. During unmarshalling
contract is optionally validated with respect to schema. After this step we have
in-memory representation of contract. The middle layer uses JAXB to publish
and modify service contracts. When a contract is published, Java content classes
are persisted in database tables. When a contract needs to be changed, tables
are updated, and depending on the origin of update, XML representation is
synchronized (via JAXB marshalling).

CDL XSD
Schema

JAXB Binding
compiler

Content
classes
(CDL)

middle layer

compile

JAXB

publish proxy

publish A

JAX-RPC/
SOAP

JAX-RPC

service A service B

JAXB
unmarshal

instantiate

A content

CDL
directory

publish

compose (A,B)

JAX-RPC/
SOAP

JAX-RPC

compose
proxy

compose

JAX-RPC

JAX-RPC

JDBC/
JAX-RPC

A proxy B proxy

result

write DB

JDBC
correct

Fig. 5. JWSDP Runtime

JAX-RPC is used for communication with Web services. Since middle layer
is also realized as a Web service, clients use JAX-RPC to invoke basic functions
of the system, and middle layer uses JAX-RPC to invoke single or composite
services. In JAX-RPC a remote procedure call is represented by an XML-based
protocol, such as SOAP. Complex SOAP messages and their structure (envelope,
encoding rules, conventions for RP calls and responses) are hidden by JAX-RPC
API. This API supports development of server side (Web service implementa-
tion) and client side (Web service invocation) infrastructure. On the server side,
remote procedures (Web methods) are specified by writing Java interface and
one or more classes that implement that interface. On the client side, a proxy
object is created that represents Web service. All Web methods are invoked on
a proxy. Therefore, it is not necessary to generate or parse SOAP messages.
The JAX-RPC runtime converts API calls and responses to and from SOAP
messages.

Contract-Based Web Service Composition Framework 65

The functioning of JAXB and JAX-RPC runtime is shown on Figure 5. It
shows two typical use cases: publishing a new service to directory and composi-
tion of two services that are already in directory. Prior to any client calls, XSD
schema describing Contract Definition Language is compiled with JAXB bind-
ing compiler, and content classes are stored in the middle layer. Client publishes
new service by issuing SOAP or JAX-RPC call to the Publish Proxy, which del-
egates the call to the Publish service in the middle layer. A service that is to
be published is located, and its CDL description is unmarshalled into precom-
piled content classes produced by JAXB compiler. Finally, write to underlying
database is performed via JDBC which completes the publish process.

Composition is initiated by sending SOAP/JAX-RPC request to Compose
Proxy, and the call is then delegated to Compose service in the middle layer via
JAX-RPC. It processes composition request, retrieves partner service informa-
tion from database using JDBC, verifies composition correctness by calculating
function correct, and constructs required dynamic proxies that represent part-
ner services using Dynamic Invocation Interface. Each proxy then connects to
its implementation and middle layer coordinates message passing in a manner
that depends on the composition pattern used. Result is returned to the client
via Compose Proxy.

5.2 Service Directory and State Management

Service directory is realized as a relational database. There are several reasons
why we use a relational database instead of a native XML database. Current
XML databases still do not support W3C XML schema which we use to define
CDL. Using native XML database could therefore lead to low data integrity.
Furthermore, XML databases use XPath as query language, and it offers no
support for grouping, sorting, cross document joins, and data types. Since service
directory requires complex queries, this is a very limiting implementation factor.
Still another downside is that updating requires retrieving an XML document,
modifying it using own API and then returning it to database.

Database was designed to take full advantage of rich descriptive options of-
fered by CDL in order to overcome UDDI limitations. The underlying database
schema allows for searching for services directly, using any combination of prop-
erties defined in CDL. That means that it is possible to search for services by
locations, methods they offer, classifications, and all other properties defined in
their pre-conditions, post-conditions and invariants. One example query would
be to find all services in the 1 km radius that accept postscript documents and
print them in color with 1200 dpi resolution, free of charge if we can supply a
security credential of certain type.

Up to now we have been talking about modeling Web services using abstract
machines comprising state variables. It is obvious that we have implicitly as-
sumed that some services can maintain their state between calls. However, Web
services are stateless and we need to introduce state management mechanism.

Although Web services are inherently stateless, many of them allow for the
manipulation of the state, such as persisting data into databases, file systems,

66 N. Milanovic

or coordinating dependent messages. There is ongoing debate in the community
whether Web services should or should not support state management. One view
is that Web services are not another Object Request Broker architecture, and
therefore should have no notion of state [18], while the other view is that state
management plays the critical role in distributed computing and as such must
be addressed at the architectural level [7]. Our position is that for the purpose of
complex service interactions the latter view is correct. We identify two possible
ways to associate a state with a Web service:

– A conversational service implements a series of operations where result of
one operation depends on the prior operations of the same or other services.
The state is maintained in the logical sequence of messages.

– A service that acts upon one or more persistent resources (database, file),
creating, modifying or deleting it based on the messages it sends or receives.

Since conversational state can be implemented using WS-Coordination and
WS-Context specifications, we concentrate on the interaction with stateful re-
sources. Furthermore, we consider only relational database as a provider of
background persistent resource. Interaction with persistent resource is described
within the resource element of the CDL. Resource is identified by its name, uri,
and resource manager (in our case, relational database driver). For each method
acting upon a resource, one of the following actions can be defined: CREATE,
READ, MODIFY, DELETE. Methods that create resources return resource identifier,
while methods that read, modify and delete resources require resource identifier.
Finally, resource property defines one or more CDL elements (state variables)
that are bound to the underlying resource.

Our efforts in providing state management are compatible with the recent
WS-Resource proposal [8], with the main difference being that WS-Resource
supports broader range of persistent resources identified using WS-Addressing.

6 Conclusion

If Web services are to become the dominant architecture of future distributed
systems, after connectivity is established (standardized) at least two more issues
need to be supported at the architectural level: trustworthiness and automatic
business to business (B2B) interactions. We try to address both in our proposed
framework. We defined trustworthiness not only as security, but as an aggre-
gation of properties (including but not limited to security) that composition
process must guarantee. Therefore we adopted correctness as a term that best
describes a ”trustworthy” or a ”trusted” composite Web service.

However, composition has still to be performed manually by application de-
veloper, albeit much easier and more flexible than in case of the other existing
approaches as it now consists only of selecting appropriate services and applying
composition operator (pattern) . The proposed framework offers possibility of
true automatic B2B interactions [2]. Formal treatment of composition process
enables use of various search strategies for the purpose of efficient allocation and
verification in the process of automatic composition.

Contract-Based Web Service Composition Framework 67

References

1. J.R. Abrial. The B Book. Cambridge University Press, 1996.
2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-

tectures and Applications. Springer-Verlag, 2004.
3. D. Berardi, D. Calvanese, D. G. Giuseppe, M. Lenzerini, and M. Mecella.

Automatic composition of e-services that export their behavior. In Proc. of the
1st Int. Conf. on Service Oriented Computing (ICSOC 2003), 2003.

4. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification: A New Approach
to Design and Analysis of E-Service Composition. In Proceedings of WWW2003,
2003.

5. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The Next Step in
Web Services. Communications of the ACM, October 2003.

6. A. Ankolekar et al. DAML-S: Web Service Description for the Semantic Web. In
Proceedings of the International Semantic Web Conference (ISWC), 2002.

7. I. Foster et al. Modeling stateful resources with web services.
http://www.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf, 2004.

8. K. Czajkowski et al. The WS-Resource Framework. http://www.globus.org/
wsrf/specs/ws-wsrf.pdf, 2004.

9. X. Fu, T. Bultan, and J. Su. Formal Verification of E-Services and Workflows. In
Proceedings of Workshop on ”Web Services, e-Business, and the Semantic Web
(WES): Foundations, Models, Architecture, Engineering and Applications”, 2002.

10. R. Hamadi and B. Benatallah. A Petri Net-based model for Web Service Com-
position. In Proceedings of the Fourteenth Australasian database conference on
Database technologies, 2003.

11. S. McIlraith and T.C. Son. Adapting Golog for Composition of Semantic Web Ser-
vices. In Proceedings of the International Conference on the Principles of Knowl-
edge Representation and Reasoning (KRR’02), 2002.

12. L.G. Meredith and S. Bjorg. Contracts and Types. Communications of the ACM,
46, No. 10, pp 41-47, October 2003.

13. B. Meyer. Applying Design by Contract. IEEE Computer vol. 25, no. 10, Oct. 1992.
14. Sun Microsystems. The Java Web Services Developer Pack.

http://java.sun.com/webservices/downloads/webservicespack.html, 2004.
15. N. Milanovic and M. Malek. Current Solutions for Web Service Composition. IEEE

Internet Computing, November/December 2004.
16. N. Milanovic and M. Malek. Extracting Functional and Non-functional Contracts

From Java Classes and Enterprise Java Beans. In Proceedings of the Workshop on
Architecting Dependable Systems (WADS 2004), Florence, Italy, 2004.

17. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Compo-
sition of Web Services . In Proceedings of the International WWW02 Conference,
2002.

18. W. Vogels. Web Services are not Distributed Objects: Common Misconceptions
about the Fundamentals of Web Service Technology. IEEE Internet Computing,
November/December 2003.

19. J. Yang and M. P. Papazoglou. Web Component: A Substrate for Web Service
Reuse and Composition. In Proceedings of 14th Conference on Advanced Informa-
tion Systems Engineering (CAiSE02), Toronto, 2002.

Practical Approach to Specification and
Conformance Testing of Distributed Network

Applications�

Victor V. Kuliamin, Nickolay V. Pakoulin, and Alexander K. Petrenko

Institute for System Programming of Russian Academy of Sciences (ISPRAS),
B. Kommunisticheskaya, 25, Moscow, Russia
{kuliamin, npak, petrenko}@ispras.ru

http://www.ispras.ru/groups/rv/rv.html

Abstract. Standardization of infrastructure and services in distributed
applications and frameworks requires ground methodological base. De-
sign by Contract approach looks very promising as a candidate. It helps
to obtain component-wise design, to separate concerns between develop-
ers accurately, and makes development of high quality complex systems
a manageable process. Unfortunately, in its classic form it can hardly be
applied to distributed network applications because of lack of adequate
means to describe nondeterministic asynchronous events. We extend De-
sign by Contract with capabilities to describe callbacks and asynchronous
communication between components. The resulting method was used to
specify distributed applications and to develop conformance test suites
for them in automated manner. Specifications are developed in an ex-
tension of C language that makes them clear and useful for industrial
developers and decreases greatly test construction effort. Practical re-
sults of numerous successful applications of the method are described.
More information on the applications of the method can be found at the
site of RedVerst group of ISP RAS [1].

Keywords: Design by Contract, asynchronous events specification, dis-
tributed system specification, formalization of standards, model based
testing, conformance testing, automated test construction, specification
extension of programming language, test oracle generation, UniTesK.

1 Introduction

Standardization of infrastructure and base services of distributed systems builds
up its strength as the important component of the movement to availability and
dependability of such systems. This process needs adequate support from meth-
ods and technologies of software construction. One of the promising approaches
to development of high-quality complex software systems is Design by Contract
(DbC) [2]. The key points of this approach can be stated as follows.

� This work is partially supported by RFBR grant 04-07-90386, by grant of Russian
Science Support Foundation, and by Program 4 of Mathematics Branch of RAS.

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 68–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Practical Approach to Specification and Conformance Testing 69

– Software is considered as a system of components separated from each other
and communicating with each other only through the specified interfaces.

– An interface of the component is a set of its operations, which semantics
is described with preconditions and postconditions. Precondition of an op-
eration states the obligations of an environment – before the call of this
operation a caller should ensure that the precondition holds. Postcondi-
tion states counter-obligations of the component. If the precondition holds
just before the call of the operation, the component ensures that the post-
condition holds just after the call. Preconditions and postconditions are
usually formulated in terms of operation parameters and internal state of
the component.

– Common parts of pre- and postconditions of all the component’s operations
can be stated as separate invariants representing integrity constraints on the
component’s state.

Design by Contract proposes a powerful and well-scalable software develop-
ment method. It possesses the following advantages.

– Clear component boundaries and obligations make possible effective sep-
aration of concerns between different components, separation of develop-
ment activities between their developers, and significant flexibility in their
implementation.

– The approach ensures broad reuse. As long as we need some functionality
stated as a postcondition, we can use any component providing this or more
strict postcondition, if we in turn ensure the corresponding precondition.
As long as developer can ensure some postcondition providing that the pre-
condition holds, he or she may change the implementation of component
without risk of introducing errors in the system.

– The approach applies rather uniformly to components of different scale. Sub-
systems consisting of many components can be also considered as compo-
nents with their own contracts. With the help of contracts of a subsystem
and constituent components we can ensure correctness of subsystem’s de-
composition, and so, step by step, can build rather complex systems on the
same methodological base. The quality of the result can be predicted due to
rigor of the approach combined with the simplicity of its application.

All this sounds great. Even more great it can be for modern service-oriented
architectures, which are based on separate components providing services for
each other. But Design by Contract in its classic form given in [2] can hardly be
applied for modern complex software systems. We can formulate the following
causes of this situation.

– Complex networking software uses many different kinds of communication
activities between its components. For example, callbacks are rather com-
mon in distributed frameworks. Another widely used kind of communication
between components of such systems is asynchronous events and messages.
Consider these issues in more details.

70 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

Callback represents a parameter of functional type, constraints on which
can be described only if we consider the properties of all functions that can be
passed in this callback. So, we need to impose additional contract on callback,
although it is only a parameter of some operation, not an operation itself.
This kind of contracts and its use in system development is not concerned by
the classic Design by Contract approach. Any time a callback parameter is
used developers have to consider constraints on the corresponding operation
outside of DbC framework or treat them rather informally.

DbC also has no special means to describe asynchronous communica-
tions, which is very important in modern software. Moreover, in DbC frame-
work we can hardly find any means to reason about correctness of multiple
asynchronous communications performed in parallel. This is really serious
drawback of the approach, making it inapplicable to many modern systems.

– DbC approach was originally targeted for software design, and usually after
coming to rather clear understanding of the system design designers and de-
velopers cannot get any more benefits from the contracts. So, the contracts,
which require a lot of work to develop, become useless and are not supported
after some phase of the project to minimize the total effort (sometimes they
are also used for debugging). We think that to make contracts actually useful
they need additional means to provide sound and full-scale quality control of
the results of development performed on their base including automated test
construction, test adequacy measurement, regression testing, and certifica-
tion. The original approach says nothing about measurement of component’s
quality based on its contract – it provides only insights on possible usage of
contracts to check runtime behavior of the components or to test them in a
random fashion.

In this article we present possible solution of both problems. We provide
an extension of DbC approach that adds just several new entities to original
framework, but makes it applicable for specification of complex distributed ap-
plications and frameworks. In addition we present UniTesK test development
technology, which used to construct conformance tests based on DbC specifica-
tions in automated manner.

In the next section the methodological base of the suggested approach is pre-
sented. Then we consider several practical applications of the extended Design by
Contract to complex distributed systems, including both specification of system
properties, formalization of the corresponding standards, and automated devel-
opment of conformance test suites based on the stated specification. The fourth
section presents a brief review of similar approaches to specification and test
construction for distributed software. The last section of the article concludes
the discussion and provides directions of possible future development.

2 Extending Design by Contract Approach

The main point of the presented approach is the same as of the original DbC
– software is considered as a system of components communicating with each

Practical Approach to Specification and Conformance Testing 71

other through the specified interfaces. Interfaces consist of operations described
by their pre- and postcondition. The differences begin when we deal with con-
tract development for communication means of special kinds – callbacks and
asynchronous events.

Callbacks. Callbacks are considered as parts of inverse interface – a kind of
interface, which is used for calls from the system under consideration to its
environment (cp. with usual direct interface used for calls from the environment
to the system). So, a component implements some interface (its direct interface)
and requires from the environment to support some inverse interface.

Operations in inverse interface are considered as ordinary operations and
described by their pre- and postconditions. But when we define the behavior
of an ordinary operation, which may make some calls to inverse interfaces (for
example, it obtains callback as a parameter and its functionality requires to call
this callback in certain situations), we should describe the constraints on these
calls concerning their parameters and results.

To provide such a description we use model trace – each of components im-
plementing inverse interfaces considered as storing a list of calls of its inverse
operations. Each of those calls can be represented as a record with called opera-
tion identifier, values of its parameters, and value of the call result as fields. So,
in postcondition of an operation using callback we can state that this callback
was called with certain parameters. We also can state that the result of its call
was used in a certain way to produce the result of the operation call.

This extension of DbC approach, although a minor one, provides powerful
means to check systems interoperability or test whether the component can
be used inside a framework. We should provide the system or the framework
developed with description of contracts of both provided and required interfaces.
To check that two systems can operate together we need to check that each
one obeys the restrictions imposed by the other in preconditions of ordinary
operations and postconditions of inverse operations. To check that a component
can operate inside a framework we should test whether it ensures preconditions
of operations it calls in the framework and postconditions of its own callbacks
used by the framework.

Asynchronous events. More serious changes in usual DbC concepts are required
to introduce asynchronous communications. Operations, whether they are per-
formed synchronous or asynchronous calls, can be considered just in the same
way. But asynchronous events are another kind of entities. We represent them as
a special kind of operations without parameters, but having ordinary pre- and
postcondition.

Precondition of an event describes situations when this event is valid. If the
precondition does not hold, any occurrence of the event of this kind is incorrect.
Postcondition of an event describes restrictions on data provided by the event.
When precondition holds (so, events of this kind are possible) postcondition says
whether this event provides correct data or not. Asynchronous messages can be
also described in the same manner.

72 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

To define the correctness of a collection of events and calls occurring in the
concurrent manner we use so called interleaving or sequential semantics. This
semantics implies that the set of concurrent calls and events is performed in a
correct manner if they can be performed in correct manner in some sequence.
More precisely, a set {ei, i ∈ [1..n]} of calls of operations or occurrences of events
performed on or provided by a component is considered to satisfy their contracts
in a state s1 of the component if there exists such a sequence {sj, j ∈ [1..n + 1]}
of component’s states starting from s1 and the corresponding ordering {ij} of
those calls and events that each call or event eij occurs in the state sj , moves the
component to the state sj+1, and the contract of the corresponding operation
or event holds for pre-state sj , post-state sj+1, provided values of operation
parameters, and the result returned by the operation or by the event.

For example, if we have an operation printing “Hello, world!” on a printer and
an event printing “Bye!”, any result “Hello, world!Bye!” or “Bye!Hello, world!”
is considered as correct result of concurrent call of the operation and occurrence
of the event, but the result “Hello,Bye! world!” is invalid.

Although the proposed extension of DbC approach is not complex, it can
be used successfully to describe distributed systems of practical significance, to
obtain valuable results from more formal consideration of system properties,
and to test the components of the system and a system as a whole, see the next
section for examples of such applications.

Use of programming language extension. One more peculiarity of our approach
is use of extensions of programming languages to specify software properties.
This fact becomes important if one needs to apply some methodology or tool
based on formal notation in industrial practice. Widely used programming lan-
guages are commonly recognized means of communication between developers
and specifications written in their extensions are comprehensible for average
software engineers. Specialized formal notations often require advanced math-
ematical education, do not contain adequate counterparts for widely used pro-
gramming concepts (such as pointers), and therefore are rarely used in practice.

We propose uniform extension of C, Java, and C# languages [23] based
on the main concepts of our approach – pre- and postconditions, invariants,
asynchronous events, and inverse interfaces – and some additional syntactic sugar
useful in postconditions, when one needs to work with both pre-states and post-
states of the same objects. The main elements of the extension are as follows.

– Some operations in class (or some global functions in C) can have
specification modifier saying that they contain contracts of the corre-
sponding operations in the system under consideration. Such an operation
can have access constraints describing the set of objects the operation has
access to and the kind of this access (whether an object can be only read by
the operation, only written, or both), precondition represented as additional
block returning Boolean value, postcondition represented also as additional
block also returning Boolean value. Postcondition has access to objects in
the states preceding the call of the operation and the same objects in the

Practical Approach to Specification and Conformance Testing 73

states after the call (pre- and post-states). To refer a pre-value of a variable
in a postcondition we can use pre operator.

In addition, specification operations may have branch constructs marking
different behavior constraints and so defining specification-based coverage
criteria for further testing.

– Operations marked with reaction modifier represent asynchronous reac-
tions provided by the system. Such a reaction can also have access con-
straints, pre- and postcondition. But it has no functionality branches, since
the behavior of the system in this situation is not determined by
external input.

– Operations marked with inverse modifier represents inverse operations.
They also can have access constraints, pre- and postcondition.

– Invariants are represented as special methods or functions marked with
invariant keyword and returning Boolean result. The result says whether
the invariant holds or not.

The code example 2 in Appendix demonstrates some elements of specification
extension of C. It presents specification of a component implementing banking
account. The component may be implemented as a web-service, or EJB, or plain
class – this does not matter for the description of its functionality.

An account has two operations and can produce events on change of balance.
Each event stores the difference between the new value of the balance and the old
one. The first operation, deposit(), is used to deposit money on the account.
The second one, withdraw(), is used to withdraw money from the account.
Both operations can give rise to an event on account change storing the actually
deposited sum or withdrawn sum as a negative number, but the results of several
operations can be summed by one such event with the total change of the balance.

Negative value of the balance means that a credit is given to the account
owner. The credit is limited by fixed maximum possible credit value, which is
state in the invariant. Postconditions of operations and event define their impact
on the state of the account. bank variable stores map of account identifiers into
account structures.

3 Practical Applications of the Method

This section presents some results of practical application of the approach de-
scribed above in two areas – clarification and formalization of standards and
automated construction of conformance test suites for distributed software.

3.1 Formalizations of Standards

This subsection concerns with two case studies in standard formalization related
with distributed applications. The first example is standard clarification and
conformance test suite development for ISO/IEC 13818-11, a standard on Intel-
lectual Property Management and Protection in MPEG-2 domain. The second
one is a part of specification-based test suite development for an implementation
of IPv6 protocol suite – the next generation of the Internet protocol.

74 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

Formalization of IPMP. A standard for MPEG-2 Intellectual Property Man-
agement and Protection (IPMP-2) [3] is an attempt to create a flexible and
interoperable solution for Digital Rights Management in MPEG-2 distribution
chain from content provider to user. For the sake of readability we will refer to
ISO/IEC 13818-11 [3] as “IPMP-2 specification” below in this section.

The original architecture for protecting MPEG-2 movies, called Conditional
Access (CA), proved to be non-interoperable. Playing content from a particular
producers required purchasing Conditional access solution from certain vendors,
and CA solutions from different vendors were incompatible.

IPMP-2 specification regulates IPMP operations on the side of a user. IPMP
Device includes a Terminal and a number of IPMP Tools. IPMP Tools perform
all operations needed to prepare data for playback such as user authorization,
content deciphering, watermarks processing, etc. IPMP Tools are software or
hardware modules that are plugged to specific control points in the MPEG-2
processing pipe. Terminal intercepts multimedia data and passes them to the
corresponding instances of IPMP Tools for processing. Results of processing
(e.g. deciphering) are returned to the Terminal for further processing. IPMP
Tools interact with each other and the Terminal by means of message exchange.
IPMP-2 specification provides a number of messages for several purposes, such
as authentication or notification.

Content providers add control information and protection signaling to their
content. This information includes indications on which tools to use, how to
initialize the tools, etc. The IPMP Device parses content and tries to acquire
IPMP tools from the network if needed. Then the device instantiates tools with
given parameters and starts playback.

IPMP-2 specification uses Syntax Definition Language [4] for defining syntax
of messages and IPMP-related data in content. Still the semantics of messages
and data is defined in plain text without any formal notation.

The formalization of semantics of IPMP-2 operations has the following facets.

– Constraints on data integrity.
– Constraints on prerequisites and results of operations.

The work on IPMP-2 formalization was conducted for Audio Video coding
Standard Working Group of China (AVS). Length of the studied specification
is about 30 pages. The project resulted in two submissions [5,6] to AVS DRM
group and a prototype of conformance test suite for processing IPMP Control
Information in bit streams.

Other results of the project include the following.

– We identified significant inconsistencies in syntax specification of IPMP data
in bit streams. For example, it allowed inserting up to 65 536 bytes of data
(16-bit length field) in a descriptor which length is limited to 256 bytes.

– Under-specifications were found in the semantics of the Mutual Authentica-
tion – a security protocol for establishing trust between two tool instances.
We demonstrated that current specification of Mutual Authentication does
not ensure interoperability between implementations from different vendors.

Practical Approach to Specification and Conformance Testing 75

– Correctness criteria of data in IPMP-2 specification are poorly defined. Dis-
cussion with IPMP developers showed that there are many implicit rules of
what is correct and what is not. For example, IPMP-2 specification defines
IPMP Tool List structure as a container for IPMP Control Info classes, but
it is intended to carry information about tools only. We put this implicit
constraint into explicit form: each element of IPMP Tool List is of IPMP
Tool Info type. The list of constraints educed during the formalization for
IPMP Control Information classes is presented in [6]. The constraints are
not written in formal notation yet.

Taking into account numerous misspellings in code parts of IPMP-2 specifi-
cations the exact number of fixes we proposed is hard to count.

The standard study showed that IPMP-2 specification consists of several
loosely related pieces that sometimes contradict to each other. Certain require-
ments are under-specified or contain errors.

Contract formalization of IPv6. IPv6 is a group of protocols located at the Net-
work Layer of the OSI Reference Model [7]. IPv6 provides services to protocols
of transport layer, such as UDP and TCP.

IPv6 features a much greater address space compared to IPv4, the current
version of the Internet Protocol. Large address space enables true point-to-point
connectivity within global scope. Besides extended address space IPv6 includes
improved routing architecture and integrated suite of protocols for autoconfigu-
ration and discovering the state of the communication.

Implementations of IPv6 provide three classes of interfaces: procedural (API),
binary (ABI), and message-based.

Procedural interfaces include generic sockets API and several IPv6-specific
extensions. Binary interfaces are non-standard, implementation-specific ways to
access the kernel part of an implementation. Examples of such interfaces are
request code for ioctl call on Unixens or control code for DeviceIOControl
routine in Windows accompanied with memory layouts for inputs and outputs.
Message-based interface is an abstraction for sending and receiving IPv6 data-
grams to or from Data Link Layer.

IPv6 messages and part of procedural interface are standardized by Inter-
net Engineering Task Force in IPv6-related Requests for Comments (RFCs).
Binary interface and some part of procedural interface are not standardized and
are implementation-specific. Since the component functionality should be un-
derstood unambiguously to apply Design by Contract fruitfully, it is natural to
limit formalization to the scope of messages and standard API of IPv6.

The scope of our projects on IPv6 conformance testing was formalization and
testing of the following basic features of IPv6.

– Sending datagrams from the transport layer to the network and processing
of incoming IPv6 packets.

– Neighbor Discovery on hosts. Neighbor Discovery is a suite of service proto-
cols for identifying router and neighbor nodes attached to a link and detect-
ing their reachability status.

76 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

– Multicast Listener Discovery on hosts. Multicast Listener Discovery is a pro-
tocol to obtain information about multicast listeners attached to a link.

– UDP over IPv6.

The contract formalization is based upon requirements presented in regulat-
ing RFCs. We studied the requirements of many RFCs, most notably
[8,9,10,11,12,13,14,15,16,17,18]. More than 400 separate functional requirements
were elicited.

RFCs define protocol semantics in plain text mostly. Syntax is defined in
tabular format with textual definition of bit-wise message layout.

We identified a number of inconsistencies and under-specifications in IPv6
regulating documents. For example, the specification of IPv6 protocol [8] enu-
merates a number of cases that should be considered as errors in incoming frag-
mented IPv6 packets, and a number of cases that are not errors. Unfortunately
this enumeration misses several important cases, such as fragments overlap.

Despite the defects found we can state that IPv6 regulating requirements are
well-defined as a rule. They are detailed enough to ensure interoperability be-
tween implementations and at the same time leave much flexibility
to implementers.

The formal model of the IPv6 subset described above is about 8500 lines of
code in the specification extension of C language [19]. The model was used to
build a test suite that was applied to several open and commercial implementa-
tions of IPv6 protocol stack (see the next subsection).

3.2 Automated Conformance Test Construction

The historically first application of the extended DbC approach was automated
test development. The specifications written in the described manner can be
used to construct conformance test suite with the help of UniTesK technology.
Here we provide a short introduction into UniTesK. The interested reader can
find more details on it in [20,21,22,23,24].

The main principles of UniTesK test development may be summarized as
follows.

– UniTesK is intended to develop conformance test suites automatically on
the base of the specifications to be tested. The main approach to testing
is black-box, testing adequacy is measured as the achieved during testing
coverage of specifications according to some criterion. Test oracles – programs
automatically checking the correctness of the behavior of the system under
test – are generated automatically from contracts specified.

– User should manually write test scenarios providing very brief descriptions
of the automaton model of the component under test, including structure
of its state and the list of operations to be called in an arbitrary state.
Each operation is supplemented with some procedure to generate values of
its parameters. This procedure can be written manually or taken from a
library; its main goal is to provide a large set of different arrays of operation

Practical Approach to Specification and Conformance Testing 77

parameters values. The development of test scenario can be facilitated with
the help of the template, taking several choices of the user as its input and
generating all the other parts of the scenario. The main goal of a scenario is
to ensure high level of test coverage in certain specification-based coverage
metric.

Test scenarios provide a powerful feature – they can be used to process
possible nondeterminism of specifications very effectively. To do this, one
can define scenario states on the base of classes of states described in specifi-
cations. This technique called factorization allows creation of rather efficient
and compact tests for complex subsystems. Details of the technique can be
found in [25].

– Similar template technique is used to create test adapters providing binding
between specifications and implementation under test.

– The UniTesK tool used translates specifications, adapters, and scenarios into
the base language of the tool (C, Java, or C#) and executes the resulting
test. During test execution the sequence of test calls is generated on-the-
fly using the data presented in the scenario and the actual behavior of the
system under test. The generation algorithm tries to call each operation in
each state achieved, but do not perform calls that add nothing to already
achieved test coverage in term of specifications (branch statements are an
example of construct that can be used to define coverage of specifications).

UniTesK technology was used to develop conformance tests in the following
projects.

– Development of regression test suite for switch operating system kernel for
Nortel Networks. Results of this project was already presented in [20,24], see
also [23]. Total size of the system under test is about 250 KLOC, the size
of resulting suite of specifications and scenarios is about 140 KLOC. To our
knowledge, this is the largest piece of formally specified software and the
largest system tested in such a formal way. The total effort of the project
is about 10 man-years, total duration – about one year and a half. 372 test
scenarios were developed for about 500 procedures of the operating system
kernel, 304 of those scenarios tested single procedure, 68 – a group of inter-
operating procedures. With different parameters of execution the resulting
test suite can perform from dozens of thousands to several millions of test
cases. Several hundreds of defects were detected in critical telecommunica-
tion software already working in the field for about 10 years. Several of bugs
found could cause cold restart of the system.

– Development of test suite and testing several IPv6 implementations. The
detailed results those projects can be found in [19] and [22]. The projects
also demonstrated the approach’s capability to clarify ambiguous parts of
informal telecommunication standards. The first project was conducted to
test open IPv6 implementation of Microsoft Research. The results showed
that the test suite provides good error detection – it found more errors that
the counterparts we could compare with at that time (Microsoft Research
organized an international contest in testing of this IPv6 implementation).

78 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

4 serious bugs were found in the system under test, one of them leads to
operating system crash and can be used to shut down any remote node in
IPv6 network. The second project is conducted in the Russian telecommu-
nication software development company Octet by its own developers trained
in our technology. It also resulted in several serious bugs found in another
proprietary implementation of IPv6.

– Test development for a part of bank CRM system based on J2EE technology.
This project demonstrated that UniTesK technology and tools can be applied
to test distributed software constructed with the help of modern component-
based technologies for multi-tier applications development. The duration of
the project was about 2 months, and its results include about a dozen of
bugs detected. The details of this and several other projects can be found
on [23].

The diagram of process including standard formalization and conformance
test suite development on the base of the approach presented is shown on
Figure 1.

Standard
Text

Clarification and
clean-up of standard

�

�

Formal Specifications
of Standard

Formalization of standard re-
quirements to API fucntionality
in terms of extended contracts

�
Test Suites

UniTesK tools + testing
goals in form of expected
test coverage values

�
��

�
��

�Conformance testing Interoperability testing

Certification

Fig. 1. Standard formalization and conformance test suite construction

4 Short Review of Similar Approaches

Here we present rather brief review of similar approaches taking into considera-
tion only those that provide possibility to describe distributed systems formally
and support test development automation for conformance testing, so a lot of in-
teresting solutions stay out of scope of this section. More detailed and systematic
review of various model-based testing techniques can be found in [26].

Practical Approach to Specification and Conformance Testing 79

The most widely used practical approach to conformance test suite construc-
tion for distributed applications is based on informally determined test pur-
poses and test cases manually developed on their base. In comparison with
methods based on some formal description of application functions, it lacks
strict and measurable definition of testing adequacy based on functional re-
quirements and forces test developers to provide correct results only on the
base of their understanding of the functions under test. Both disadvantages
can be overcome by diligence and cross-checking, but not for large-scale sys-
tems.

The usual approach to formal specification and further testing of distributed
software are based on some kind of transition systems – it may be labeled transi-
tion systems, input-output automata, and systems of communicating (extended)
finite automata. Theoretical background for most part of those works was laid
by J. Tretmans [27,28]. He proposed a formal definition of conformance rela-
tion between specifications and system under test and a method for test case
generation based not only on possible inputs and outputs of the system under
test, but also on special quiescent states where the system could not produce
any output without some input from the environment. A series of tools based
on those ideas were developed in the academic community, the most prominent
from them are TGV [29] and TorX [30]. Some of those tools can take formal de-
scriptions in such languages as SDL, LOTOS, or Estelle as input. In 2001-2003
years those tools were integrated into common environment developed in the
AGEDIS project [31]. It includes uniform testing tool architecture and UML-
based statecharts as standard input for such tools.

Transition systems used for automatic test generation proved to be very
useful instrument, but they have the following disadvantages.

– State explosion problem. When one tries to model a real system on a detailed
level, he obtains an unmanageable model with huge numbers of states and
transitions. This is a demonstration of more serious drawback – transition
systems can hardly be decomposed to separate different concerns and func-
tions, they usually require considering the system as a whole to get valuable
results. Design by Contract looks much more promising in this view since it
provides a method to consider components of a complex system separately.
In UniTesK state explosion problem can be overcome with the help of state
factorization technique.

– Inefficient processing of nondeterminism. It is rather hard to introduce non-
determinism natural to distributed applications in transition systems and
keep them useful. Most of them become inoperative after such a procedure.
So, some special actions are always needed to introduce necessary nonde-
terminism in such a model. Contract based approach incorporates it nat-
urally by stating the corresponding predicates in postcondition. Combina-
tion with factorization technique used in UniTesK, although not reducing
concurrency-related nondeterminism to negligible level, makes it much more
manageable.

80 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

5 Conclusion

The paper proposes an extension of Design by Contract approach for distributed
network applications. The main extensions are constructs for specification of
component-environment interaction through inverse interfaces and asynchronous
events. Correctness of concurrent events is checked according to sequential se-
mantics – a set of events is considered to be correct if and only if it can be
ordered into a sequence conforming to all the contracts involved.

The extended DbC approach is used in practice-oriented UniTesK test de-
velopment technology to construct conformance test suites in automated man-
ner. UniTesK tools uses specifications in extension of programming languages
(C, Java, and C# are supported now) to make them accessible and useful for
ordinary industrial developers without background in formal methods. Although
the approach and the test development technology based on it seems to be quite
general, there are a lot of technical issues concerning their use in testing appli-
cations through GUI or Web interfaces, or through interfaces including timing
events. Those issues should be resolved in future development. Since UniTesK
tools were already successfully used in several industrial projects, the authors
consider the proposed approach quite mature to be used in practical development
of standards, distributed applications, and corresponding test suites.

The focus point of the approach presented is integrated process of standard
formalization and conformance test suite development for it. This provides the
following advantages.

– Standards are intended to state not only the common syntax of interfaces,
but the common understanding of the functionality of the services described.
Formalization removes a lot of ambiguities and misunderstandings, makes
this functionality clearly stated, and so prevents a lot of potential problems
with interoperability, sustainability, and dependability of future applications
based on this standard.

– Formally stated functionality opens the door to automated conformance test
suite construction, which decrease the effort to produce conforming appli-
cations and also make them more qualitative. In addition it gives a natural
measure of testing adequacy in terms of requirements – one can precisely
say now what is tested and what is not, to what degree some application
conforms the standard and to what degree it breaks it.

Standards and development of infrastructure for distributed network applica-
tions attract more and more attention now. Neglect of the modern specification
and automated conformance testing techniques has negative influence on both
the quality of approved standards and the dependability of the systems developed
on their base. Maybe, the same causes inhibit advancement of component-based
development as a whole and growth of independent software vendors in particu-
lar. At the same time, the main restrictions of possible development are imposed
not by the lack of adequate methods and tools, but by the lack of engineering
staff having corresponding skills and experience in their application in practice.
Our experience shows that this problem can be solved successfully.

Practical Approach to Specification and Conformance Testing 81

Appendix

specification typedef struct account model {
int balance; int change; bool event;

} AccountModel = {};

invariant typedef AccountModel Account;

invariant int MaxCredit = 3;

invariant (MaxCredit) { return MaxCredit >= 0; }

invariant (Account * acc) { return acc->balance + acc->change >= -MaxCredit; }

typedef Integer AccountID;

Map * bank; // A map from Account ID to account

specification void deposit(AccountID *id, int sum) {
Account * account = get Map(bank, id);
pre {

return (sum > 0) && (account != NULL)
&& (account->balance + account->change < INT MAX - sum)
&& (account->change < INT MAX - sum);

}
post {

return (account->balance == (account->balance))
&& (account->change == (account->change) + sum)
&& (account->event == true);

}
}

specification void withdraw(AccountID *id, int sum) {
Account * account = get Map(bank, id);
pre { return (sum > 0) && (account != NULL); }
post {

if(account->balance + account->change < sum - MaxCredit) {
return (account->balance == (account->balance))

&& (account->change == (account->change));
} else {

return (account->balance == (account->balance))
&& (account->change == (account->change) - sum)
&& (account->event == true);

}
}

}

specification typedef struct account notification {
AccountID * id; int change;

} AccountNotification;

reaction AccountNotification * update() {
Map * bank saved = clone(bank); int i;
pre {

for (i = 0; i < size Map(bank); i++) {
if(((Account*)get Map(bank, key Map(bank, i)))->event) return true;

}
return false;

}
post {

Account * account saved = get Map(bank saved, update->id);
Account * account = get Map(bank, update->id);

return (account saved != NULL) && (account != NULL)
&& (update->change == account saved->change)
&& (account->balance == account saved->balance + account saved->change)
&& (account->change == 0) && (account->event == false);

}
}

Fig. 2. Example of specifications in C extension

82 V.V. Kuliamin, N.V. Pakoulin, and A.K. Petrenko

References

1. http://www.ispras.ru/groups/rv/rv.html
2. Bertrand Meyer. Object-Oriented Software Construction, Second Edition. Prentice

Hall, 1997.
3. ISO/IEC 13818-11:2004. Information technology – Generic coding of moving pic-

tures and associated audio information – Part 11: IPMP on MPEG-2 systems. 2003.
4. ISO/IEC 14496-1:2001, Information technology – Coding of audio-visual objects –

Part 1: Systems.
5. MPEG-2 IPMP Conformance Test Suite Development. AVS M1263: 2004/6.
6. Enhancing IPMP-2 for Conformance Testing. AVS M1487: 2004/12.
7. ISO/IEC 10731:1994. Information technology – Open Systems Interconnection –

Basic Reference Model – Conventions for the definition of OSI services. 1994.
8. RFC 2460. S. Deering, R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.

December 1998.
9. RFC 2461. T. Narten, E. Nordmark, W. Simpson. Neighbor Discovery for IP Ver-

sion 6 (IPv6). December 1998.
10. RFC 2462. S. Thomson, T. Narten. IPv6 Stateless Address Autoconfiguration.

December 1998.
11. RFC 2463. A. Conta, S. Deering. Internet Control Message Protocol (ICMPv6) for

the Internet Protocol Version 6 (IPv6) Specification. December 1998.
12. RFC 2464. M. Crawford. Transmission of IPv6 Packets over Ethernet Networks.

December 1998.
13. RFC 3513. R. Hinden, S. Deering. Internet Protocol Version 6 (IPv6) Addressing

Architecture. April 2003.
14. RFC 2373. R. Hinden, S. Deering. IP Version 6 Addressing Architecture. July 1998.
15. RFC 2292. W. Stevens, M. Thomas. Advanced Sockets API for IPv6. Febru-

ary 1998.
16. RFC 2553. R. Gilligan, S. Thomson, J. Bound, W. Stevens. Basic Socket Interface

Extensions for IPv6. March 1999.
17. RFC 2675. D. Borman, S. Deering, R. Hinden. IPv6 Jumbograms. August 1999.
18. RFC 2710. S. Deering, W. Fenner, B. Haberman. Multicast Listener Discovery

(MLD) for IPv6. October 1999.
19. http://www.unitesk.com/products/ctesk/
20. V. Kuliamin, A. Petrenko, I. Bourdonov, and A. Kossatchev. UniTesK Test Suite

Architecture. Proc. of FME 2002, LNCS 2391, pp. 77–88, Springer-Verlag, 2002.
21. V. Kuliamin, A. Petrenko, A. Kossatchev, and I. Bourdonov. UniTesK: Model

Based Testing in Industrial Practice. In proceedings of 1-st Europpean Conference
on Model-Driven Software Engineering, December 2003.

22. V. Kuliamin, A. Petrenko, N. Pakoulin, I. Bourdonov, and A. Kossatchev. Integra-
tion of Functional and Timed Testing of Real-time and Concurrent Systems. Proc.
of PSI 2003, LNCS 2890, pp. 450–461, Springer-Verlag, 2003.

23. http://www.unitesk.com
24. I. Bourdonov, A. Kossatchev, A. Petrenko, and D. Galter. KVEST: Automated

Generation of Test Suites from Formal Specifications. FM’99: Formal Methods.
LNCS 1708, Springer-Verlag, 1999, pp. 608–621.

25. I. B. Burdonov, A. S. Kossatchev, and V. V. Kulyamin. Application of finite au-
tomatons for program testing. Programming and Computer Software, 26(2):61–73,
2000.

Practical Approach to Specification and Conformance Testing 83

26. V. Kuliamin. Multi-paradigm Models as Source for Automated Test Construction.
Proc. of Workshop on Model Based Testing, Barcelona, Spain, March 2004. Also
available in Electronic Notes in Theoretical Computer Science 111:137–160, 2005,
Elseveir.

27. J. Tretmans. A Formal Approach to Conformance Testing. Proceedings of the IFIP
TC6/WG6.1 Sixth International Workshop on Protocol Test systems, Pau, France,
September 1993, pp. 257–276.

28. J. Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software – Concepts and Tools, 17(3):103–120, 1996.

29. J. -C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on the fly verification
techniques for the generation of test suites. Proccedings of CAV’96, Conference
on Computer Aided Verification, Rutgers University, New Brunswick, New Jersey,
USA, July-August 1996.

30. J. Tretmans, A. Belinfante. Automatic testing with formal methods. In Eu-
roSTAR’99: 7-th European Int. Conference on Software Testing, Analysis and Re-
view, Barcelona, Spain, November 8-12, 1999. EuroStar Conferences, Galway, Ire-
land. Also: Technical Report TRCTIT-17, Centre for Telematics and Information
Technology, University of Twente, The Netherlands.

31. http://www.agedis.de/

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 84 – 98, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model-Based Optimization of Enterprise Application
and Service Deployment

András Balogh, Dániel Varró, and András Pataricza

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Budapest, Magyar Tudósok körútja 2
{abalogh, varro, pataric}@mit.bme.hu

http://www.inf.mit.bme.hu/FTSRG

Abstract. Enterprise services play an important role in these days’ business en-
vironments. With the growing incidence of web services, the web service-based
collaboration of systems is spreading. This leads to a large number of depend-
ing services. As these components form critical business applications, the avail-
ability and performance aspects of them are critical. We introduce in this paper
a method that collects the QoS requirements of the high level services and
propagates them through the dependencies to lower levels. Our tools also gen-
erate an optimal deployment configuration to a definite set of server nodes that
guarantees the required availability and performance characteristics for all
services.

1 Introduction

Nowadays, enterprises heavily depend on the quality of the service (QoS) they pro-
vide. In many cases, this quality of service primarily depends on the quality of their
business IT systems. Such applications not only have to deliver a service with correct
functionality (e.g. a bank transaction withdraws the right amount of money from our
bank account), but these services has to meet several non-functional requirements
(e.g. bank customers would expect the system to be available when they access it).

While non-functional requirements (such as performance, reliability, and availabil-
ity) play an important role in business IT systems, QoS issues are neglected when
designing such systems. Typically, the QoS assessment of a system is deferred until
the deployment phase, which is frequently too late: if the deployed system does not
meet its QoS requirements, it will cause an immense increase in the cost of
the project.

To avoid these risks, the fulfillment of these QoS attributes has to be validated
throughout the entire lifecycle of the project. Due to the increasing success of the
Model Driven Architecture (MDA) [1], such a validation preferably starts from a
model-based estimation / prediction of the QoS parameters carried out in a very early
phase of the design.

Enterprise systems consist of many heterogeneous hardware and software compo-
nents that form a logically and physically distributed infrastructure. The prediction

 Model-Based Optimization of Enterprise Application and Service Deployment 85

and calculation of the QoS attributes in such an environment is difficult, because of
the high number of dependencies between software components.

In the current paper, we present a method for model-level calculation of availabil-
ity and capacity requirements for enterprise services and application components. Our
method takes the QoS attributes of the highest level services that are directly accessed
by users and propagates these values to the lower levels. Using a hardware catalog,
we also synthesize the optimal hardware architecture for running the services while
maintaining the required availability and performance characteristics.

We illustrate our results with an example on Java 2 Enterprise Edition (J2EE) plat-
form that is widely used and supported by software vendors like IBM, SUN, BEA,
and many more.

2 Standards and Technologies

The development methodology of enterprise systems usually integrates several tech-
nologies and standards in the fields of design and implementation. We introduce the
most commonly used of these in the following sections.

2.1 Model Driven Architecture

MDA[1] (Model-Driven Architecture) is an emerging concept of the OMG (Object
Management Group). Its main goal is to provide a framework for model-based system
development, even in rapidly changing hardware and software environments. In par-
ticular, MDA addresses the challenges of todays highly networked, constantly chang-
ing system environments by providing an architecture that assures cross-platform
interoperability, portability and reusability of software components.

MDA recommends starting the design with a platform-independent model (PIM) of
the application. This focuses on the functional requirements, business logic, and the
logical data structures, independent from any implementation technology e.g. J2EE.
The suggested modeling language is UML 2 [2].

The next (automated) step is transforming the model to one or more PSMs (Plat-
form Specific Model), which now contains information about the running middleware
and other platform components.

The final step of the MDA design flow is the code generation phase. This is a
largely automated process, which yields the source code of the application. The de-
velopers can extend the generated code with manually written parts.

The main advantage of MDA is the portability of software components between
platforms, without manually recoding the application. This reduces the costs and
time-to-market of the new versions, while reducing the probability of errors and po-
tential security leaks caused by manual coding.

2.2 Enterprise Services

In addition to delivery the proper functionality, enterprises today need to extend their
reach, reduce their costs, and lower the response times of their services to customers,
employees, and suppliers.

86 A. Balogh, D. Varró, and A. Pataricza

Typically, applications that provide these services must be integrated with the ex-
isting enterprise information systems (EISs) with new business functions that deliver
services to a broad range of partners. The services should be highly available, to meet
the needs of today’s global business environment; secure, to protect the privacy of the
business partners and the integrity of the enterprise; reliable and scalable, to ensure
that business transactions are accurately and promptly processed, and business growth
can be followed by the software and hardware infrastructure.

The second important aspect of services besides the functional requirements is the
quality-of-service (QoS) attributes of the services. Services are commercial in most
cases, so the availability and proper performance of the services is an important point.
The guaranteed QoS attributes are defined in a Service Level Agreement (SLA). This
acts as a contract between the service provider and the user.

In most cases, enterprise systems are implemented as distributed multi-tier applica-
tions. The middle tier functions are grouped into web services and can be automati-
cally discovered and used by partners, allowing the automatic intra-enterprise collabo-
ration. This leads to a distributed, multi-organization service oriented architecture
(SOA) [3] that involves many partners and service endpoints.

Several standards have been developed to ease the integration of basic services into
complex processes. One of the most commonly used ones is the Business Process
Execution Language (BPEL) [4] that is supported by the greatest software and middle
tier vendors. BPEL can be used with services running on various platforms, such as
Microsoft .NET and J2EE.

2.3 Design for High Availability in J2EE

We introduce the basic architecture and common redundancy patterns of the Java 2
Enterprise Edition (J2EE) platform. This introduction is based on the 1.4 version of
the J2EE specification [5].

2.3.1 J2EE Architecture
The basic architecture of J2EE is built up from at least three tiers.

The first tier is responsible for data persistence. This layer consists of so called en-
tity beans. Beans represent the smallest independent software components in Java. An
entity bean maps to a row in a relational database table. The entity beans and their
EJB container manage the creation, storage, and retrieval of application data. The
architecture also defines transaction support for bean methods.

The second tier of the architecture is responsible for the implementation of busi-
ness logic. This tier is made up from session beans that collect the business methods
required by the application logic and may also contain message-driven beans that
support asynchronous communication with reliable messages.

The third (presentation) layer of the architecture is responsible for the implementa-
tion of application user interfaces. Web clients use the HTTP interface of the server to
access the web pages that are dynamically created by the servlet container of the J2EE
server.

The J2EE architecture defines the infrastructural services that are needed to exe-
cute enterprise applications therefore the developers do not need to create custom
interfaces to naming, authentication, message queuing, and database servers.

 Model-Based Optimization of Enterprise Application and Service Deployment 87

2.3.2 Redundancy Patterns
There are several patterns for creating redundant J2EE server architecture for high
availability and load balancing solutions. The basic concept behind these techniques
is clustering. A cluster is a set of computers which all run the same J2EE application
and communicate with each other to determine the set of currently active nodes and to
synchronize their internal state.

The incoming requests are distributed between the running nodes to provide load
balancing. If a node goes down, the other nodes take over its workload. This results in
higher availability, because the failure of a single node does not directly affect the
availability of the services and applications.

2.3.3 Existing Development Environments
Today’s development environments (such as IBM Websphere Studio and Microsoft
Visual Studio .NET) focus on modeling the functionality of applications, and the
generation of the source code skeletons for software components. They do not sup-
port, however, the definition and evaluation of QoS attributes such as availability and
performance. The evaluation of the non-functional parameters is deferred to the test-
ing phase of the development.

The capacity design of the hardware infrastructure environment that runs the appli-
cation is not supported by any automated tools; therefore designers have to manually
create the deployment plan and tune the hardware infrastructure to achieve the needed
availability and performance levels.

2.4 Fault Model

Enterprise application server nodes consist of several layers of hardware and software
components. We assume that errors can only occur in lower levels (illustrated by
Figure 1), either in the hardware or in the operating system level. Errors of the higher
level components can be easily and rapidly detected and repaired by the local man-
agement agent that can restart the failed component.

Hardware and operating system errors cannot be repaired as fast as the higher level
errors. This results in a much longer downtime. Even if the severity of the hardware
errors is lower than the software errors, the overall service downtime is much higher
because of the longer repair time.

Fig. 1. Application server components

88 A. Balogh, D. Varró, and A. Pataricza

Our fault model is applicable if we can suppose that the higher level software com-
ponents are stable enough not to cause a significant downtime. Commercial J2EE
application server software and database management software meet this requirement.
As the application modules are typically generated by automatic code generators from
a higher level model, such as BPEL (Business Process Execution Language), we
suppose that the application components cause no errors.

The fault model introduced here has several limitations. If running on a depend-
able, highly redundant hardware, where hardware component and operating system
errors do not cause system restart (for example, in a massively parallel system) higher
level software errors will be dominant in service downtime.

As in most cases business software components are running on entry or medium
level servers where the fault hypothesis is satisfied.

3 Modeling Technique

We introduce the modeling techniques used for representing the functional and QoS
aspects of the systems in the following sections. We used the standard UML Profile
for J2EE for functional modeling with several extensions to allow the representation
of the QoS aspects of system components.

We illustrate the explained concepts with a running example.

3.1 Running Example

Our example is a simple order processing and stock management system. It receives
orders from customers, prints invoices and generates backorders to part suppliers if
necessary. It consists of several services.

The partner service is responsible for storing and retrieving the partner data, such
as name, address, payment and discount options. The product service offers access to
the various data of the companies’ products such as name, price, and description.

The stock service manages the administration of the product’s stocking and move-
ments. It relies on the product service. The actual stock state can be queried for a
specific product, and goods movements can be administered. The accounting service
is used to create invoices for customers who order goods from the company. This
service relies on the partner service. The ordering service that relies on the product,
the stock and the accounting services manages the incoming product orders.

The backorder service is responsible for the creation of backorders to parts suppli-
ers if a specific product runs out of stock. This service uses the product, stock and
partner services. It is automatically invoked periodically and checks the stock state.

Each service bean uses an entity bean to get access to business entity data. For ex-
ample, the ordering service uses the OrderBean to access the data of living orders in
the system. All entity beans use the same database to store their data.

The services are grouped into three EJB containers and a database module.
Figure 2 illustrates the deployment units of the system.

 Model-Based Optimization of Enterprise Application and Service Deployment 89

«EJBContainer»
ordering

+ AccountingService

+ InvoiceBean

+ InvoiceItem

+ OrderBean

+ OrderingService

«EJBContainer»
partner

+ BackOrderService

+ PartnerBean

+ PartnerService

«EJBContainer»
product

+ ProductBean

+ ProductService

+ StockBean

+ StockService

database

«depends»

«depends»

«depends»

«depends»

«depends»

«depends»

Fig. 2. Deployment units in the system

3.2 Modeling J2EE Components

Modeling J2EE components in UML is standardized by several UML Profiles, for
example the UML Profile for EJB [6]. The standard UML classes are extended with
stereotypes and tagged values to provide information about the J2EE-specific proper-
ties of the system components.

The EJB profile defines several stereotypes for marking the various types of Enter-
prise Java Beans. The “SessionBean” stereotypes marks the session beans, and the
“EntityBean” marks the entity beans. Several other types (for example, message
driven beans) and subtypes (container, or bean managed persistence) of components
can be defined, but these are only necessary for the code generation, not for the QoS
analysis.

3.3 Modeling Non-functional Requirements

3.3.1 Representing QoS Attributes in UML Models
Non-functional requirements are out of the scope of the EJB profile described earlier;
therefore these properties have to be modeled in another way. Modeling non-
functional aspects of systems is described in UML Profile for Schedulability, Per-
formance, and Time [7], and in UML Profile for Quality of Service and Fault Toler-
ance [8]. These profiles define elements for the specification of non-functional (for
example, performance and availability) parameters of system components.

In our architecture, the service access points are either web services (represented
by stateless session beans) or session beans (either stateful or stateless). This means
that the QoS attributes are defined for these components, and has to be automatically
propagated to lower level ones. Other session beans and entity beans work at lower
levels to provide basic services for the others and provide access to databases.

• The QoS attributes that are used in our work are the expected availability and the
peak workload of services.

These two attributes are specified as tagged values (QOS_Availability and
QOS_Workload, respectively) for the components. Our optimization method also
needs the component dependencies to be defined, with the help of standard UML

90 A. Balogh, D. Varró, and A. Pataricza

dependencies. This way, our transformation can compute the needed QOS aspects of
the lower level components.

As the unit of deployment in J2EE is the EJB module, which is a set of Enterprise
Java Beans, we need to propagate the QoS attributes of beans to these modules. EJB
modules are represented by UML packages in our models. A package gets the maxi-
mal availability requirement and the sum of the peak workload of its components.
These values are used in the further calculations.

3.3.2 QoS Attributes in the Example
Not all services in our example have QoS attributes, because the source model con-
tains only those attributes that are defined for the external available, complex ser-
vices. The attributes for the other services will be automatically calculated by the
optimizer.

As mentioned before, the QoS attributes are propagated to the EJB modules. The
results are illustrated in Table 1 (N/A means that no explicit constraints are defined).

Table 1. Calculated QoS parameters for the EJB modules

Module name Availability Workload
Product 99.9 200
Partner 99.9 22
Ordering 99.99 50
Database n/a n/a

3.4 Modeling Available Physical Components

In our scenario physical system components are server computers that can run J2EE
applications. UML Components represent the server types in our model.

3.4.1 Performance Metrics
There are several industrial standard benchmarks that measure the overall perform-
ance of a server system with all of its hardware and software components. One of
these is the TPC-W benchmark developed by the Transaction Processing Performance
Council. This test measures the performance of a web-based transactional system. As
enterprise services are web services, this benchmark can be used as a reference for the
overall system performance.

The model of the server components has a tagged value called “performance”,
which holds the number of the served requests determined by the TPC-W benchmark.
This will be used to determine the capacity (maximum workload) of the server.

3.4.2 Component Costs
The server components also have an associated cost value that indicates the TCO
(Total Cost of Ownership) value of the server, including the cost of all hardware
(processor, memory, disks, UPS, and so on) and software (OS, application server,
management tools) components, and all associated services (extended warranty, on-
site service) for a given period of time.

 Model-Based Optimization of Enterprise Application and Service Deployment 91

The time factor depends on the desired lifetime of the service or application that is
served. In case of applications with long life cycle, the basis of the calculation could
be the expended life cycle of the server farm. The typical length of the lifecycle of
servers is around 2-3 years. To make the cost of the possible server choices compara-
ble, the time factor should be universal for the whole model.

The components have a tagged value called “TCO” to hold the Total Cost of Own-
ership value.

3.4.3 Component Availability
The third QoS value that is attached to servers is the availability. This attribute de-
pends on the hardware, software, and also on the value added services offered to the
specific server. Hardware suppliers specify the MTBF (Mean Time Between Failures)
value for computer hardware. This can act as a starting point of availability calcula-
tion. As mentioned before, we handle only hardware and operating system errors, as
the potential downtime they can cause is much higher than is case of higher level
software component errors (application server or database server components), be-
cause the software components can be efficiently monitored and restarted in case of
errors.

If we want to achieve high availability, software errors play also an important role,
as the 30-60 sec typical restarting time of a J2EE application server can also affect the
availability of a critical service. In this case, the system adds extra redundancy to
avoid the unavailability of service.

Availability (A) can be calculated from the MTBF value and the MTR (Mean Time
to Repair) by the following formula (1).

A = MTBF/(MTBF/MTR) . (1)

Availability is also attached to the server components by a corresponding tagged
value.

3.4.4 Component Cardinality
The last attribute of physical system components that is required for our analysis is
the maximum number of available instances of a given server type. This is important
if we want to deploy the needed services on an existing infrastructure. The number of
the server instances is stored in tagged value “max_instances”.

3.4.5 Physical Components in the Sample System
In this sample system we have three different server machines that can be used for
serving the application. The performance and availability data of the servers are ap-
proximate values as we do not know the exact service contracts data and resale prices
for these machines.

The first configuration is an entry level Intel x32 server that can process 90 re-
quests per minutes and has an availability of 97%. Its TCO is 2500 Euros.

The second configuration is a more robust Intel x32 server that can process 170 re-
quests per minutes and has an availability of 98%. Its TCO is 3700 Euros.

The third configuration is a robust multi processor PowerPC server with redundant
components and can process 1400 requests per minutes and has an availability of
99.9%. Its TCO is 18000 Euros.

92 A. Balogh, D. Varró, and A. Pataricza

4 The Optimization Workflow

We introduce our code generation and architecture synthesis methods in this section.
We have been used our general-purpose model transformation system for the imple-
mentation of the required transformations and code generation scripts.

4.1 Architecture Synthesis

The process synthesis consists of two main steps (see Fig. 3). The first step is the
transformation of the UML model of the system to a special format that can be im-
ported to the optimization program. The program that is used for the synthesis is the
second step of our workflow. The result of the process is the recommended architec-
ture of the system. In parallel with the optimization, the source code of the system
components can also be generated with commercial code generators or the VIATRA 2
framework.

UML Model

Source code

QoS data of service
and servers Optimized

deployment structure

optimization
model

transformation

code generation

Fig . 3. Model processing workflow

4.1.1 Model Transformation
The first basic step of the transformation is the propagation of the bean QoS values to
the EJB modules as described earlier. Each EJB module inherits the maximum avail-
ability and aggregates the performance value of its beans.

The second step is to propagate the bean dependencies to the modules. An EJB
module depends on an other one if at least one of its beans depends on one of the
beans in the other container.

After all QoS attributes and dependencies have been propagated to EJB containers,
the transformation program generates the input file for the optimization program by
the traversal of the UML package structure. It prints out the defined capacity and
availability requirements and dependencies for every UML package that is marked
with the stereotype EJBModule.

4.1.2 Deployment Optimization
We developed a simple command-line application that computes the optimal deploy-
ment pattern for the input system. It takes the input file with the system services and
available hardware components and generates the optimal system configuration as
output.

The arrangement of EJB modules between servers is a special optimization task.
There are finite number of resources and finite number of software modules that must

 Model-Based Optimization of Enterprise Application and Service Deployment 93

be related to each other. There are also several special constraints that describe the
QoS constraints and dependencies of the components.

The goal of the optimization process is to minimize the overall system cost while
providing the necessary system availability and capacity.

4.2 Implementation Technology

We have developed VIATRA [9], our general model transformation system, in order
to support the dynamic, multilevel metamodeling features of VPM [10], and ge-
neric/meta transformations [11]. The main intended usage of our framework is de-
pendability evaluation and optimization of business process workflow models and
UML models.
A source user model (which is a structured textual representation such as an XMI
description of a UML model exported from a CASE tool) is imported into the VPM
modelspace. Transformation specifications can be constructed by combining graph
transformation [12] and abstract state machine [13] rules. These rules can be created
within the framework or in a UML tool using a special profile (and, in the future,
using the QVT standard).

The rules are then executed on the source VPM model by the generic (higher-
order) VIATRA rule interpreter in order to yield the target (VPM) model. Finally, the
target model can be serialized into an appropriate textual representation specific to
back-end tools.

The VIATRA 2.0 framework is implemented as a set of plugins for the Eclipse
framework [14] that is a widely used open-source system development and modeling
framework.

5 The Mathematical Model for Optimization

Optimization, in general, means a method that searches a point in the problem space
that satisfies the defined constraints, and the objective function has a maximum (or
minimum) value. Several special optimization problem classes have been defined, for
example the traveling agent problem.

5.1 Our Optimization Problem

5.1.1 Initial Steps
The first step of the optimization process is the calculation of the aggregate workload
of software modules. The developer only has to specify the direct workload for a
specific container (the actual requests from clients) but the capacity needs to depend
also on the indirect workload (calls from depending services). In our simple model,
we suppose that a dependency represents a single call to the target service.

The calculation of aggregate workload is a recursive expression that calculates the
workload as a sum of the direct workload and the additional workload of depending
services (expression (1)). The depends(i) is a set of services that depend on service i.

94 A. Balogh, D. Varró, and A. Pataricza

∈

+=
)i(dependsj

)j(Workload)i(need_Capacity)i(Workload .
(1)

5.1.2 The Workload Constraint
The workload constraint means that the aggregated capacity of all deployed software
modules on a specific machine must not exceed the capacity of the machine. A further
tuning possibility is to define a saturation factor (SF) that specifies the maximum rate
of workload on machines. Expression (2) specifies the workload constraint.

∈
≥∗∈∀

)(

)()(:
mdeployeds

sWorkloadSFmCapacityHWm
(2)

5.1.3 The Availability Constraint
The availability constraint specifies that the actual availability of each service must
be at least as high as the required availability. The actual availability of a service
can be calculated from the availability of the hardware that runs the service
and the availability of depending services. Expression (3) specifies the availability
constraint.

A service is available if the hardware it is running on is available and all the re-
quired services of the specific service are available. We suppose that if a hardware
unit is running then all services deployed on it are running as well. We also suppose
that all hardware nodes are independent, which means that all of them have their
own uninterruptible power supply, disk subsystem, and so on.

)i(A)i(A:servicesiAA

)availableHW(P)availableHW(P

)availableservicesneededAllavailableHW(P)i(A

requiredact
serviceneededrunning)j(HW,j

)j(HW)i(HW

servicerequiredrunningHWall

act

≥∈∀∗=

=∗=

=∧=

∏

∏

∀

(3)

5.1.4 The Objective Function
The objective function of the optimization process is the overall cost of the system, as
described by expression (4). The total cost of the system is the aggregation of the
product of the cost and the actual number of the defined hardware components.

∈

∗=
HWm

System musednumbermTCOTCO)(_)(. (4)

5.1.5 The Solutions
A solution of the problem is a mapping between computers and software modules that
satisfies all constraints. Solutions are computed by a backtrack algorithm that tries to
build the mapping step-by-step while maintaining the constraints. The optimal solu-
tion is the solution that has the lowest overall cost.

 Model-Based Optimization of Enterprise Application and Service Deployment 95

5.1.6 Additional Steps
If the required availability or performance levels cannot be reached using the basic
hardware types defined in the model, the optimizer applies the J2EE redundancy pat-
terns for the design. This means that the program creates clusters from the basic hard-
ware nodes to raise the availability and performance of a server. If the availability
requirements do not allow single point of failures in the system, the developer can
specify that only redundant arrays of machines can be used during architecture syn-
thesis. This means that the program creates clusters even if the performance and avail-
ability of a single computer could satisfy the needs of the services.

The capacity of a cluster consisting of several nodes can be lower than the sum of
the capacity of the nodes. That is because various synchronization messages and algo-
rithms that are running on nodes. The typical value of performance loss depends
highly on the actual server software, but it can be measured or taken from server
benchmarks. Our tool supports the definition of a “performance loss percent” that is
subtracted from the sum performance of the cluster nodes. If the services only use
stateless session beans and entity beans, this loss is negligible in most cases.

More components (EJB containers) can be deployed on the same server if the
hardware has enough capacity for running all the services. This ensures that the work-
load of the servers will be nearly equal, and the hardware costs will be minimized.

The optimization program calculates the optimal configuration of services and
hardware nodes using the explained equations and constraints. The output of the pro-
gram is a list of services and the associated hardware nodes. This defines the sug-
gested configuration of the system.

5.2 Optimization Results of the Example

The optimal configuration with the original QoS attributes is to create a four node
cluster from the medium level server. This configuration has an availability of more
than 99.99999% and a total cost of 14800 Euros. All services are deployed to this
single cluster.

If we suppose that the business grows very rapidly and the workload grows to the
tens of the original. The optimal architecture in this case is to create a two node clus-
ter form the third server that runs the database, and the partner modules, an other two
node cluster from the third type that runs the product module, and a three node cluster
formed from mid range servers that runs the ordering module.

The total cost of the system is 83100 Euros. This is 5.6 times more than the origi-
nal, but offers 10 times more performance. This shows that a few of large but expen-
sive servers can be used for serving heavy workloads, but for small workloads clus-
ters built up from cheap servers can be used successfully.

6 Related Work

The model-driven analysis of QoS attributes of component-based systems under de-
sign has recently become a hot research topic. Primary focus is usually put on per-
formance issues such as, e.g., in [17,18,19]. The early assessment of traditional de-

96 A. Balogh, D. Varró, and A. Pataricza

pendability attributes is carried out in [20,21]. In most of these papers, a traditional
transformation-based approach is followed where the QoS parameters are generated
from a higher-level initial model (semi-)automatically. In contrast to these ap-
proaches, we focused on availability and cost parameters of deployment.

In [22], the authors define a method for dependability analysis of systems based on
UML models. The basic idea behind that method is the transforming UML models to
Timed Petri Nets (TPN). The starting point of the method is the architectural level
model, so it works on a static infrastructure and does not modify the systems
architecture.

In [23], the authors define a method for dependability analysis of systems based on
UML models. The basic idea behind that method is the transforming UML models to
Timed Petri Nets (TPN). The starting point of the method is the architectural level
model, so it works on a static infrastructure and does not modify the systems
architecture.

Probably, the most closely related work is that work of Bastaricca et al. [15], where
the authors describe two deployment optimization methods that can be used in a dis-
tributed component-based environment. Both algorithms do the optimization of the
deployment, but they work on a static infrastructure that cannot be modified. This
way, they cannot be used for infrastructure planning, only for deployment on existing
hardware environments. Moreover, the algorithms do not optimize for TCO, but for
network utilization.

7 Conclusion and Future Work

Enterprise services play an important role in today’s business environment. Besides
the functional requirements the quality-of-service attributes are also more and more
important. The most commonly used development environments do not support the
handling of QoS attributes like availability and performance requirements of services.

In the paper, we introduced an approach to generate the optimal deployment plan
for a set of enterprise services based on the UML model of the system and a hardware
specification catalog. Our method ensures that the deployed system will keeps the
availability and capacity constraints defined by the system model.

The current method is applicable only in design time, thus further improvements
has to be made to extend its capabilities to allow the runtime reconfiguration of the
systems. This will enable the automatic tuning of system availability and performance
reflecting to the changes in the environment (the growth of the workload or the per-
manent fault of a server node).

To achieve this functionality, our optimizer need to be connected to a systems
management software such as IBM Tivoli [16] that collects runtime information about
the usage statistics and state of services and hardware nodes.

Further research has to be done for discovering methods to a finer granularity
workload prediction that relies on the behavioral model of the services (for example it
discovers that a service uses another several times). Other methods has to be devel-

 Model-Based Optimization of Enterprise Application and Service Deployment 97

oped to predict the relative weights of service executions to distinguish more complex
services as they cause higher workload as simple services.

References

1. The Object Management Group, MDA Information Portal, http://www.omg.org/mda
2. The Object Management Group, UML2 Superstructure specification, August 2003

http://www.omg.org/
3. Steve Graham et al, Building Web Services with Java: Making sense of XML, SOAP,

WSDL and UDDI, 2002.
4. Microsoft, IBM, BEA, et al. Business Process Execution Language for Web Services

Specification. 5 May 2004.
5. Sun Microsystem. Java 2 Platform Enterprise Edition Specification v1.4. November 2003.

http://java.sun.com/j2ee
6. Jim Conallen, Building Web Applications with UML, Addison-Wesley, 1999.
7. The Object Management Group, UML Profile for Schedulability, Performance, and Time

Specification, January 2005.
8. The Object Management Group, UML Profile for Modeling Quality of Service and Fault

Tolerance Characteristics and Metrics, September 2004.
9. D. Varró, G. Varró, and A. Pataricza. Designing the automatic transformation of visual

languages. Science of Computer Programming, vol. 44(2):pp. 205-227, 2002.
10. D. Varró, A. Pataricza. VPM: A visual, precise and multilevel metamodeling framework

for describing mathematical domains and UML, Journal of Software and Systems Model-
ing vol. 2 pp. 187-210, 2003.

11. D. Varró, A. Pataricza. Generic and Meta-Transformations for Model Transformation
Engeering. In Proc. UML 2004: 7Ih international Conference on the Unified Modeling
Language

12. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (eds.). Handbook on Graph Gram-
mars and Computing by Graph Transformation, vol. 2: Applications, Languages and
Tools. World Scientific, 1999.

13. E. Börger and R. Stark. Abstract State Machines. A method for High-Level System Design
and Analysis. Springer, 2003.

14. The Eclipse Framework. http://www.eclipse.org
15. M. Bastarrica et al. Two Optimization Techniques for Component-Based Systems Deploy-

ment, Proceedings of the Thirteenth International Conference on Software Engineering and
Knowledge Engineering, pp. 153-162, 2001

16. IBM Corporation, IBM Tivoli Software Homepage, http://www.ibm.com/software/tivoli/
17. S. Chen, I. Gorton, A. Liu, and Y. Liu, Performance Prediction of COTS Component-

based Enterprise Applications, CBSE5, Orlando, Florida, USA, May 2002.
18. A. Bertolino, R. Mirandola Software performance engineering of component-based sys-

tems. Proceedings of the Fourth Int. Workshop on Software and Performance, pp. 238 –
242, 2004.

19. J. Skene, W. Emmerich. Model Driven Performance Analysis of Enterprise Information
Systems, In Proc. of the Int. Workshop on Test and Analysis of Component Based Sys-
tems, Warsaw, Poland, April, ENTCS vol. 82, num. 6, 2003.

20. V. Grassi. Architecture-based Dependability Prediction for Service-oriented Computing.
In Proc. of WADS 2004,

98 A. Balogh, D. Varró, and A. Pataricza

21. V. Cortellessa, H. Singh, B. Cukic: Early reliability assessment of UML based software
models. Proceedings of the Third Int. workshop on Software and Performance, pp. 302 –
309, ACM Press, 2002.

22. István Majzik, András Pataricza, and Andrea Bondavalli. Stochastic dependability analysis
of system architecture based on UML models. In Rogerio de Lemos, Cristina Gacek, and
Alexander Romanovsky, editors, Architecting Dependable Systems, volume LNCS-2677,
pages 219-244. Springer, 2003.

23. István Majzik, András Pataricza, and Andrea Bondavalli. Stochastic dependability analysis
of system architecture based on UML models. In Rogerio de Lemos, Cristina Gacek, and
Alexander Romanovsky, editors, Architecting Dependable Systems, volume LNCS-2677,
pages 219-244. Springer, 2003.

On Best-Effort and Dependability,
Service-Orientation and Panacea

Aad van Moorsel

University of Newcastle upon Tyne,
School of Computing Science,

Newcastle, UK
aad.vanmoorsel@newcastle.ac.uk

Abstract. In this short position paper we argue that dependability
technologies must be based on best-effort engineering principles, if they
are to be useful for general-purpose enterprise and consumer IT. We
will explain why ‘best-effort based dependability’ is not an oxymoron,
but, instead, a necessity. We will also argue that service-orientation fits
the best-effort engineering philosophy, and in that sense is part of the
panacea for high-availability.1

1 Best-Effort and Dependability

We make the following observations:

– reliability and availability is increasingly important in enterprise, home and
other networked IT systems

– these systems must rely on best-effort designs, which focus on scalability and
simplicity over reliability and availability

– improving reliability or availability will always be at the cost of some other
system property (such as scalability, ease-of-use, extensibility)

We conclude from these observations that traditional dependability solutions
are typically ill-suited to respond to the demand for increased dependability,
simply because they would sacrifice the system’s scalability or other properties
to too large an extend. Instead, to improve dependability properties of enterprise
and consumer IT systems we require technologies based on advanced best-effort
methods. Only then can dependability be improved without sacrificing other
important system properties.

Advanced best-effort has the following implications on dependability design
and research. First, we have to relax the stringency of the properties we are
after. Instead of strict reliability guarantees, we need a probabilistic statement,
or even a subjective statement about the objective. Subjective statements are
possible, since they can be verified after the fact through user questionairres and
1 This article is based on the author’s position statement at ISAS 2005 during the

panel discussion on ‘Are Service-Oriented Architectures the Panacea for the High-
Availability Challenge?’

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 99–101, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 A. van Moorsel

other information-gathering techniques. Secondly, as a consequence of dealing
with less rigorous properties and designs, we have to be willing to rely on ‘good
engineering’, trusting that sound design choices with dependability in mind, will
indeed lead to improved dependability. We will not be able to proof a priori if
dependability increases, and we therefore need to build up a body of process and
engineering methodology that is known to ‘do good’ for a system’s dependability.
Finally, the fact that we can not define and proof system dependability a priori
is compounded by the unpredictable usage, behaviour and attacks exhibited
by modern and future IT systems. This implies that we must stress run-time
measurement, based on which systems can be tuned, adapted and evolved in
response to observed changes or unsatisfactory dependability.

2 Service-Orientation and Panacea

The above call for marrying dependability and best-effort can be seen in many
lights. We argue it is absolutely necessary to combine these two elements to have
impact on enterprise and customer IT systems. Obviously, this approach can not
lead to systems that are as dependable as airplanes, nuclear power plants and
other safety-critical systems. However, researching and practising best-effort de-
pendability can lead to a body of processes, methodology, engineering guidelines
and theory that can form a tool box for improved dependability for a wide range
of enterprise and consumer systems. If anything comes close to a panacea for
high-availability, it is marrying dependability and best-effort.

The best example to date of the power of best-effort dependability is TCP,
but many more examples exist. In fact, all dependability work that is concerned
with the problem of scalability, must compromise dependability to some extend
(e.g., probabilistic protocols for consistency). This is a symptom of best-effort
dependability. The call for autonomic computing solutions from the IT industry
has a best effort flavour, although the vision statement in [2] poorly reflects
the inherent limitations (in terms of achievable dependability) of introducing
probabilistic and statistical approaches.

At the application level, we consider service-oriented architectures a piece
of the solution [3]. Breaking up functionality, and limiting the dependencies
between services, is part of the principles that one needs to follow to design
dependable systems for enterprise and consumer IT. At the same time, such
loose coupling implies that it is harder (or practically impossible) to implement
certain dependability properties, such as exactly-once transactions. As with any
form of best-effort dependability, adhering to service-orientation implies that one
loses certain dependability options, but that is unavoidable when dealing with
open, large-scale enterprise and consumer systems.

Note: Further discussion along above lines can be found in [3]. The call for
dependable general-purpose systems by IBM can be found in the autonomic
computing manifesto [2]. An interesting sample of recent research in the area of
dependable, scalable systems can be found in the ‘self-*’ book [1].

On Best-Effort and Dependability 101

References

1. O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. van Moorsel
and M. van Steen (Eds.), Self-Star Properties in Complex Information Systems,
Springer, Lecture Notes in Computer Science vol. 3460, 2005.

2. P. Horn, “Autonomic Computing: IBM’s Perspective on the State of Information
Technology,” IBM, USA, 2002. (Available at http://www.research.ibm.com.)

3. A. van Moorsel, “Grid, Management and Self-Management,” The Computer
Journal, British Computer Society, Oxford University Press, UK, vol. 48, no. 3, pp.
325–332, 2005.

Are Service-Oriented Architectures the Panacea
for a High-Availability Challenge?

A Position Statement

Guido Laures

Hasso-Plattner-Institute for IT-Systems -Engineering at University of Potsdam,
Germany

Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany
guido.laures@hpi.uni-potsdam.de

Abstract. Service-oriented architectures (SOA) are based on a
paradigm that aims at facilitating the management of business processes.
Services are business relevant functionalities that are transparently pro-
vided by one or more applications. This simplified view on SOA has
little in common with the view on technical and non-functional system
properties from the high-availability research area.

After the presentation of service examples taken from various research
approaches this position paper introduces a service layer model delimit-
ing the notion of services. It is shown that specific layers of this model
can help to determine and increase the availability of business processes.
Furthermore the usability of service composition is questioned. The out-
look in the last section of this position statement dares to predicts a shift
from service-orientation to event- and business-orientation.

1 What Is a Service?

When discussing services or service-oriented architecture it is crucial to have a
common terminology. Lately the term service has been overstrained and is fre-
quently used at random. Asking someone 10 years ago to give an example for
a service might have resulted in an answer like ’having one’s hair cut’. During
the last few years service has increasingly become a technical term. However, it
still remains unclear what exactly a service is, even in the world of IT. The term
is used for end-user services which are provided by a web site (e.g. ordering a
book or home banking) as well as for the so called web services. The latter do
not have a precise definition either. Related articles on service-oriented archi-
tecture state that amazon.com itself can be considered a web service [1]. Other
approaches define a web service as a component with a SOAP-based access to
its operations [2]. Especially in the telecommunication industry services are used
for protocol-centric functions provided by networks. Recently Foster, et.al. [3]
have introduced the grid services concept whereas Fremantle [4] and Krafzig,
et.al. [5] adhere to enterprise service architectures. This ambiguity shows that a
clustering of service types inside a layer model is mandatory.

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 102–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Are SOA the Panacea for a High-Availability Challenge? 103

2 Service Layers

Different views can be applied to introduce layers into the SOA world. The
first one is a view on the usage scenario of the services provided by an SOA;
technical properties define the layers in the second view. These differentiating
views on SOA are crucial to avoid confusing comparisons of usage-oriented and
technology-based service clusters.

The most coarse-grained service type can be found in the enterprise service
layer. Services on that layer can be accessed from outside the service provid-
ing entity. Therefore, they need to be very expressive and easy to use. In most
cases a service from this layer triggers or is part of a business process contain-
ing outsourced activities. The second layer contains all intra-enterprise business
processes that are provided as a service. Those mostly composite services are ad-
ministered by a process execution engine holding the state of the process during
its enactment. The layer below mainly contains stateless services which provide
access to specific functionalities of a certain application domain. Access to data
objects is granted by the data-centric services of the lowest layer. They can be
invoked to create, read, update, or delete (CRUD) data objects. Figure 1 shows
this layer model that is compatible to the model presented by Krafzig, et.al. [5].

Fig. 1. Usage scenario-oriented service layer model

Notice that this layering shows that the non-functional and architectural
requirements for services strongly depend on their usage scenario. Services on
layer 1, for instance, have stricter requirements for security, whereas services on
the lower layers need to perform better. The technology that provides services
also differs between the service layers. Standardized web service interfaces are
needed for public access whereas the lower layers can be implemented using, for
instance, a high performing message bus.

Thus, it makes sense to introduce a second layer model that is derived from
a more technical view on SOA (see Fig. 2). In this model the transparency of the
service providing technology decreases from top to bottom while the reusability
of the services increases. Layer 1 contains the traditional services (e.g. having

104 G. Laures

one’s hair cut) that do not involve any computational resources. Frontend ser-
vices are provided by a user interface (e.g. ordering a book at amazon.com). The
web services world is represented by the third layer. Layers 4-7 contain function-
alities that are sometimes also perceived as services. They range from component
interfaces (CORBA, COM, RMI) to grid services or even CPU-cycles.

Fig. 2. Technology-oriented service layer model

Because of the immense differences between the various service layers in
different views, perceiving everything as a service is misleading. If you name
everything a service you can accordingly call every architecture a service-oriented
architecture. Consequently, the specific benefits of a real SOA blur. Thus, a
layering like the aforementioned helps to define clear conceptual differences and
to expose its value-adding concepts. Therefore, the following chapters use the
term service for services in usage scenario layers 1 and 2 and technological layer
3. In doing so, I follow the initial concepts on service-orientation as published
in [6].

3 SOA and High-Availability

When investigating the aforementioned usage layer 1-2 and the technological ser-
vice layer 3 (SOAP-based services) analysing high-availability is difficult. The
reason for this is that these layers do not deal with the classical hardware- or
protocol-centric availability challenges. Instead they rather deal with the avail-
ability of processes.

In a classical, non service-oriented enterprise architecture applications offer
their specific functionalities via remote interfaces. The different types of such

Are SOA the Panacea for a High-Availability Challenge? 105

interfaces range from simple batch file transfer mechanisms like FTP, to compo-
nent remote interfaces like COM or CORBA, up to SOAP-enabled web services.
The activity flow of an application-spanning business process is implicitly hard
coded inside the application logic and its resulting inter-application communica-
tion. As every remote interface provides functionality that can be used in a large
number of different business processes it is not possible to determine which busi-
ness process is currently conducted by a certain interface. Thus, all examinations
on non-functional properties of remote interfaces are application-centric and un-
aware of any business context. Knowing the availability of a certain remote
interface does not provide any information on the availability of the business
processes using it.

Service-orientation aims at providing business process oriented functionali-
ties in a unified fashion. Service enactment components such as workflow engines
control the invocation of specific services according to a well-defined process
description. This allows to determine business process availability based on the
availability of the services used by this process. Additionally, the automatic iden-
tification of business processes affected by the availability of application domain
services becomes possible. The real-time retrieval of this kind of information has
become a key differentiating factor in many industries (esp. telecommunication).
Because many service level agreements (SLA) nowadays are rather business-
than technology-oriented it is vital to find mechanisms to prove business process
availabilities. This is where service-orientation kicks in.

4 Service Composition vs. Traditional Programming

When dealing with business processes, service composition is often highlighted
as one of the core benefits of an SOA. The concept of service compositions
is to combine existing services to implement new applications and processes.
However, the aforementioned technology-based service layer model shows that
the reusability of services decreases the more coarse-grained a service is designed.
Thus, service compositions have to be based on the low-level service layers 4-7.
However, the services on those layers provide access to functionalities that are
often more technologically driven than those on the layers above. A composition
of such services is not just a selection of an appropriate sequence of service
invocations but rather evolves into a complex workflow that is often just as
complex as a classical program.

Standards like BPEL [7] have become so complex that they can only be
used by process technology experts but not by experts in the industrial domain.
Consequently, composing is nothing less but another kind of programming. The
(semi-)automation of service composition planning [8] might be a promising
approach to solve this problem.

5 Conclusion and Outlook

This short position statement refined the notion of services by introducing layer
models. These layers help to concentrate on the usage scenarios and technologies

106 G. Laures

where SOA is applicable. It showed that the layers of services and the layer on
which high-availability calculations base differ. Thus, the contribution of SOA
to the high-availability approaches is little. As a conclusion service-orientation
helps to administrate IT-architectures but it does not consider availability issues
by default. On a process level, however, service-orientation can help to measure
and consequently optimise the availability of business cases.

Because the service notion is overstrained I expect an oversaturation in re-
search and business followed by decreasing interest in service-orientation. Even
though the paradigm can be leveraged to solve actual business problems it has to
be enhanced by event-driven approaches and a stronger orientation on business
needs. During this clean-up phase in the world of service-orientation some hot
topics like service semantics or services grids are yet to prove capable.

References

1. McIlraith, S.A., Martin, D.L.: Bringing semantics to web services. IEEE Intelligent
Systems 18 (2003) 90–93

2. W3C: Web Services Architecture. (2004) http://www.w3.org/TR/ws-arch/.
3. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open

grid services architecture for distributed systems integration (2002)
4. Paul Fremantle, S.W., Khalaf, R.: Enterprise services (2002)
5. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA. Prentice Hall (2004)
6. IBM: Web Services architecture overview. (2000)

http://www-106.ibm.com/developerworks/webservices/library/w-ovr/.
7. Organization for the Advancement of Structured Information Standards:

Web Services Business Process Execution Language (WS-BPEL). (2004)
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

8. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of web services using
semantic descriptions. In: Web Services: Modeling, Architecture and Infrastructure
workshop in ICEIS 2003. (2003)

Modeling User-Perceived Service Availability

Dazhi Wang1 and Kishor S. Trivedi2

Duke University, Durham, NC, USA 27708
wangdz@cs.duke.edu, kst@ee.duke.edu

Abstract. Service availability is an important consideration when carri-
ers deploy new, packet-based services. In this paper we define the service
availability based on user behavior, and derive formulas to compute ser-
vice availability starting with the user behavior model and the system
model. To automatically generate high fidelity user and system models,
we use Stochastic Reward Nets (SRNs) and demonstrate how to com-
bine the user SRN model and the system SRN model to analyze the
service availability. We apply our approach to an SAF compliant media
gateway controller (MGC) architecture in VoIP system. By building and
numerically solving the combined SRN model of the MGC and the user,
we compute the service availability, and evaluate various factors that
influence it.

1 Introduction

Today the fast development of new technologies have enabled a variety of new
services for voice, data and multimedia. Ensuring high service availability is im-
portant as users become more dependant on these services to conduct their every-
day activities. To achieve high service availability with lower cost, the Service
Availability Forum (SAF) [1] was created by a group of premier communications
and computing companies. Its goal is to create and promote open standards that
will build the foundation for on-demand, uninterrupted network services deliv-
ered over packet-switched communication networks, and help make these services
as dependable as those delivered through traditional Public Switched Telephone
Networks (PSTN). By conforming to the interface specifications, the hardware
producers can create open, COTS building blocks that have a higher reusability
and a larger market; while software vendors can reduce the time-to-market and
development cost for highly available software with enhanced portability and
integration capabilities.

As the SAF develops open standards to help meet end-user expectations for
high availability services, the need for the quantification of service availability
becomes evident. The modular architecture of SAF-compliant systems enables
the succinct analytical modeling of service availability and performance, which
allows users to do “what if” analysis by combining different system configura-
tions, policies and building blocks to meet various availability and performance
requirements. Previous research mainly focused on the traditional availability
measures such as point availability, interval availability or steady-state availabil-
ity, whose definitions can be found in [3] [13] [15]. These measures are primarily

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 107–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

108 D. Wang and K.S. Trivedi

from the system’s point of view, representing a fraction of a time period the sys-
tem is up or the probability that the system is up at certain time point. However
service providers are more concerned with the user-perceived service availability,
which is a function of system hardware resource availability, software resources
and user behavior. Therefore it is important to characterize the user behavior in
order to model service availability. During the user interaction with the system,
the user often submits multiple requests to achieve certain goals, each of the
requests may require different resources in the system. These characteristics can
be summarized as follows:

– Not all resources in the system are required to be up at every point in
time. This is determined by the complex nature of the modern systems, and
motivates us to focus on service availability instead of the system availability.

– A resource is required to be up only during the time periods when the user
requests this resource. This characteristic determines that our service avail-
ability analysis must be user-centric.

– A resource may be required to be up for multiple time periods during the
user interaction with the system. Due to this requirement, traditional point
availability measures can not be applied in service availability analysis. In-
stead, joint availability [3] or interval reliability [2] may be well suited for
this purpose.

Based on these observations, the service availability analysis needs to take into
account the details of user behavior, and it should adopt a dynamic view of
system up/down states (when needed, as long as needed, as many times as
needed). We interpret the user-perceived service availability1 as follows:

During a user interaction (session) with the system, the user issues multiple
requests at different time points for different system resources. The unavailability
of requested resource will cause the request to fail. The service availability is the
probability that all requests are successfully satisfied during the user session.

Some research effort related to service availability can be found in the lit-
erature, such as the user-perceived availability [12] [18] or the task-oriented
reliability/availability [7] [8] [14]. However these efforts did not fully explore
the service characteristics provided by the modern complex systems and experi-
enced by the end users. In order to model the service characteristics as mentioned
above, we borrow the user behavior graph approach [4] that was originally used
for workload synthesis, and derive the service availability starting from the user
behavior model and the system availability model. The rest of the paper is
organized as follows: Section 2 derives service availability formulas from user
and system models, and proposes the use of Stochastic Reward Nets (SRNs)
[6] [16] to automatically combine user and system models to compute the ser-
vice availability. Section 3 applies our service availability modeling technique

1 It can be argued that this measure is better interpreted as user-perceived service
reliability, but to conform to the standard practice, we use the term user-perceived
service availability.

Modeling User-Perceived Service Availability 109

to an SAF-compliant media gateway controller (MGC) architecture. Section 4
gives the numerical results of service availability modeled in Section 3, and an-
alyzes various factors that influence the service availability. Section 5 presents
the summary and conclusions.

2 Service Availability Modeling

2.1 User Behavior Graph (UBG)

To model the service availability we first introduce the concept of user behavior
graph [4] [5]. The user behavior graph is composed of a set of nodes and arcs.
Each node indicates a certain type of request issued by the user. A transition
implies a new request is issued, and an arc to node j represents the newly issued
request is of type j. Each arc is attached a probability that the next issued
request is of the type this arc points to. The sojourn time in each node is the
sum of the time the system takes to process the request and the think time after
the user receives the response. Figure 1(a) shows an example user behavior graph

1

2

p
11

Ep
12

p
1E

p
22

p
21

p
2E

(a) original

1T

2T

p
11

E

p
12

p
1E

p
22

p
21

p
2E

1P

2P

1

1

(b) extended

Fig. 1. Example user behavior graph with two types of requests

with two types of requests. For each node i = 1, 2, pij , j = 1, 2 is the probability
that the user will issue a request of type j after the current request of type i.
There is one absorbing node E representing session end. The probability that
the user will end the session after issuing a request of type i is piE . Since the
occurrence of a failure during the request processing will influence the user-
perceived service availability while a failure during the user think time will not,
we extend the graph by splitting each node into two nodes for our purpose: one
representing the request processing state, and the other representing the user
think state. Figure 1(a) then becomes Fig. 1(b). Given a user behavior graph
that describes a user session, the user-perceived service availability is defined as
the probability that all requests in the session are successfully completed when
the user enters E state.

110 D. Wang and K.S. Trivedi

2.2 User-Perceived Service Availability Derivation

In this section we introduce the computation of user-perceived service availabil-
ity, starting from simple examples.

Single Task Service Availability. Given a two-state system model with con-
stant failure rate λ and repair rate μ, the system dependability measures are
shown in Table 1.

Table 1. Dependability measures of the two-state system

Reliability Instantaneous Avail. Steady-state Avail. Interval Relia.
R(t) = e−λt A(t) = μ

λ+μ
+ λ

λ+μ
· e−(λ+μ)t A= μ

λ+μ
RI(t, x) = A(t) · e−λx

Now we consider the user-perceived service availability of a single user task
running on the two-state system. The system model is shown in Fig. 2(a) with
constant failure rate λ and repair rate μ, and the user model is shown in Fig.
2(b) which contains only one request. Assume the initial service accessibility is

λ

μ

(a) System (b) User

Fig. 2. System and user models for single task reliability

u0, then the user perceived service availability can be written as:

SA = u0 ·
∫ ∞

0
Pr(system is up during [0, y]) · Pr(request completes at time y)

= u0 ·
∫ ∞

0
R(y) · dFP (y)

If the request processing time is deterministic, i.e., the sojourn time distribution
function FP (y) in user state P is 0 when y < x, and 1 otherwise. Then

SA = u0 ·
∫ ∞

0
R(y) · dFP (y) = u0 · e−λx.

If the request processing time is exponentially distributed with rate λP , i.e.,
FP (y) = 1 − e−λP y, then SA can be written as

SA = u0 ·
∫ ∞

0
R(y)dFP (y) = u0 ·

∫ ∞

0
e−λy · λP · e−λP ·ydy = u0 · λP

λ + λP
.

Modeling User-Perceived Service Availability 111

Service Availability for UBG with Loops. In this example we extend the
user behavior graph of the previous example to allow multiple requests in the
user session. The system model and the UBG are shown in Fig. 3. In the UBG

U D

λ

μ

(a) system

T E

p

1-p

P

1

(b) user

Fig. 3. System model and UBG with loop

of Fig. 3(b), after leaving the request processing state P , the user will enter
thinking state T . And upon leaving T state, with probability p the user will
send another request, and with probability 1 − p the user will end the session.
We assume the request processing time distribution FP (t) and the user thinking
time distribution FT (t) are both exponentially distributed with rate λP and λT ,
respectively. The system reliability R(t) and instantaneous availability A(t) are
as in Table 1. We define the service continuity

C =
∫ ∞

0
R(t)dFP (t) =

λP

λ + λP
,

and the service accessibility

D =
∫ ∞

0
A(t)dFT (t) =

μ

λ + μ
+

λ

λ + μ
· λT

λ + μ + λT
.

Then C is the probability that a request can complete given it is initiated in the
system, and D is the probability that the user can successfully initiate a request
upon leaving the thinking state. Given the initial service accessibility u0, the
probability Si that the user ends the session after i successful requests can be
written as:

Si = u0 · Ci(pD)i−1 · (1 − p) = u0(1 − p)C · (p · C · D)i−1

And the user-perceived service availability is:

SA =
∞∑

i=1

Si =
u0 · (1 − p) · C

1 − p · C · D
=

u0 · λP

λ+λP
· (1 − p)

1 − p · [λP

λ+λP
· (μ

λ+μ + λ
λ+μ · λT

λ+μ+λT
)]

Service Availability for General System and User Models. To derive the
formulas for service availability computation, we generalize the simple system
and user models in previous examples as follows:

112 D. Wang and K.S. Trivedi

– The UBG is a general discrete time Markov chain (DTMC) with m+1 states,
where the (m+1)th state is the absorbing session end state E. The state space
ΩU = {1, 2, ..., m, E}. Let P = (pij)m×m = (P1, P2, ...,Pm) be the transition
probability matrix for the first m states, and q = (p1E , p2E , ..., pmE). The
initial probability vector when the session begins is v0 = (v1, v2, ..., vm).
The sojourn time of each state i is arbitrarily distributed with distribution
function Fi(t). For a request processing state the sojourn time is the request
completion time, while for an user think state the sojourn time is the user
think time. Matrix P and the set of sojourn time distributions {Fi(t)} define
an independent Semi-Markov Process (SMP).

– The system availability model (SAM) is a continuous time Markov chain
(CTMC) with state space ΩS = {1, 2, ..., n} and generator matrix Q. The
initial probability vector of SAM at the beginning of the session is π0 =
(π1, π2, ..., πn). Each request processing state i in the user model needs dif-
ferent resources to be up in the system, which can be translated to requiring
the system model to be in a certain subset of states. Therefore each user
state i has its own definition of system up states Ri ⊆ ΩS and down states
ΩS − Ri (For user think state all system states are up states). By removing
the outgoing transitions from system down states in ΩS − Ri, Q becomes
Qi for each user state i. We define Di = (dkj)n×n, where dkj = 0 for k �= j,
dkk = 1 if k ∈ Ri, otherwise dkk = 0. Then for a vector v, v ·Di is the vector
where each entry with an index is not in Ri is set to 0. For all the user think
states, Di = In×n, which means no resource is needed and the system model
can be in any state.

In order to derive the service availability from the generalized user and system
models, we define Π(k) = (πij(k))m×n, and Πi(k) = (πi1(k), πi2(k), ..., πin(k)),
where πij(k) is the probability that the user model is in state i and the system
model is in state j right before the kth transition in the user model.

With the explanations above we derive the service availability as follows:

For k = 1,Πi(1) = vi · π0Di ·
∫ ∞

0
eQi·tdFi(t) = vi · π0Di · Hi

where vi is the probability that the user model is initially in state i, π0Di keeps
only the entries in π0 that correspond to states in Ri, Hi =

∫ ∞
0 eQi·tdFi(t) =

(hjk)n×n, hjk is the probability that given the initial state j, the system is in
state k at the time when the first transition occurs in the user model. And the
probability that the session will successfully end after one transition in the user
model is: A(1) = q · Π(1) · 1T.

Given Π(k−1), Π(k) can be computed using (1) shown below. Here we only
present the derived formula due to space limitations.

Π(k) =

⎛
⎜⎜⎜⎝

PT
1 · Π(k − 1) · D1H1

PT
2 · Π(k − 1) · D2H2

...
PT

m · Π(k − 1) · DmHm

⎞
⎟⎟⎟⎠ (1)

Modeling User-Perceived Service Availability 113

The probability that the session will successfully end after k transitions in the
user model is:

A(k) = q · Π(k) · 1T

From the above deductions, the total service availability is

SA =
∞∑

k=1

A(k) = q ·
∞∑

k=1

Π(k) · 1T

2.3 SRN Model of User Behavior

In order to apply the formulas above to the computation of service availabil-
ity, we need to construct the user model and the system model. However as
the modern systems become more and more complex, it is often infeasible to
manually construct a high fidelity system model. To solve this problem we re-
sort to Stochastic Reward Nets (SRNs) [6], which is a higher level formalism
based on Stochastic Petri Nets (SPN) [9] [17]. Since SRNs can only deal with
exponentially-distributed timed transitions, as a compromise we assume the so-
journ times in the user model and the transition times in the system model are
exponentially distributed.

By assuming each state has exponentially distributed sojourn time, we can
build the stochastic Reward Net (SRN) model for the user behavior graph as
shown in Fig. 4. A token in PiP , i = 1, 2 means a request of type i is being

T
11

T
fail1

T
12

T
1E

[g
1
]

P
1T

P
F

P
1P

T
1P

P
2P

P
2T

P
E

T
21

T
22

T
2P

T
2E

T
fail2

[g
2
]

Fig. 4. SRN model for the user behav-
ior graph

Service

unit 1

Service

unit 2

Service

unit 3

Service

unit 4

Node A Node B Node C

Service group 1

Service group 2

Call processing

Service 1

Call processing

Service 2

Active
Standby Standby Active

Fig. 5. Two services with ac-
tive/standby on three cluster nodes

processed. A token in PiT , i = 1, 2 means the user is thinking after receiving the
response for request type i. The firing of Tij , i = 1 or 2, j = 1 or 2 represents the
issuance of the current request is of type i and that the next issued request is of
type j. The firing of TiE , i = 1 or 2 puts the token into the absorbing place PE ,
representing successful session end. There are two immediate transitions Tfail1

114 D. Wang and K.S. Trivedi

and Tfail2 with guard functions g1 and g2. The return values of g1 and g2 are
determined by markings in the system model: g1 will return true if the system
resources required to process requests of type 1 are unavailable; g2 will return
true if the system resources for request type 2 are unavailable. If there is a token
in P1P (meaning a request of type 1 is being processed) and g1 returns true,
Tfail1 will fire and put the token in the absorbing place PF , representing service
failure. And similarly for Tfail2. Combining the user SRN model and the system
SRN model, the service availability is the probability that there is a token in the
absorbing place PE .

3 Service Availability of an SAF Compliant MGC

In this section we apply the service availability modeling technique to an SAF
compliant media gateway controller (MGC) for voice over IP (VoIP).

3.1 Basic Architecture

The media gateway controller is hosted on three identical nodes in a computer
cluster. The MGC application is SAF AIS-compliant and the availability is man-
aged by the SAF AIS Availability Management Framework (AMF). The main
function for the media gateway controller is for call processing, which is required
during the call setup, teardown, or when the user invokes additional call features
in the middle of a call. There are two application servers running on the cluster
for call processing, each in charge of processing different call features. Process
replication is adopted as the mechanism to provide application level software
fault tolerance [10] [11]. These service processes run on top of the Service Avail-
ability Forum Middleware. The system model is shown in Fig. 5. Each service
application has one service instance, and each service instance is assigned to two
service units in different cluster nodes: one service unit is active and the other
is standby. Either node A or node B has 1 service unit acting as the primary
for call processing service 1 or call processing service 2. Node C has two service
units acting as a shared standby for both services.

The service unit may fail due to either software fault or hardware fault. The
fault will be detected by the health monitoring mechanisms in the AMF. After
the fault has been detected, recovery strategies are adopted to tolerate the fault.
Here we assume that for software faults the AMF tries several levels of recovery
actions: 1) component restart, which is fast and has little or no impact on the
application; 2) switchover that switches the service to the standby service unit,
in the mean time the faulty node is restarted; 3)manual repair of the cluster node
if automatic restart of the previous level cannot recover the fault. For hardware
faults, we assume recovery actions 2 and 3 are adopted by the AMF. After the
fault is detected the AMF tries to recover the fault using from lower level to
higher level recovery strategies, each level requiring more time to execute than
the previous level.

Modeling User-Perceived Service Availability 115

T11

Tfail1

T
12

T
1E

[g
1
]

P
1T

P
F

P1P

T1P

P2P

P
2T

P
E

T
21

T22

T
2P

T
2E

T
fail2

[g
2
]

g
1
: (#P

upA
=0 && #P

nodeA
>0) || (#P

upC
= 0 && #P

nodeA
=0)

g
2
: (#P

upB
=0 && #P

nodeB
>0) || (#P

upC
= 0 && #P

nodeB
=0)

[g
2
]

[g1]

TsfA

ThfA

TsfdetA

ThfdetA

PsfA

PhfA

P
processA

T
puncoverA

T
pcoverA

T
rcoverA

P
rebootA

TruncoverA

P
repairA

TrepairA

T
sfB

T
hfB

T
sfdetB

T
hfdetB

P
sfB

P
hfB

P
processB

T
puncoverB

T
pcoverB

T
rcoverB

P
rebootB

T
runcoverB

P
repairB

T
repairB

P
upA

PupB

T
1

sfC

T
hfC

T
sfdetC

T
hfdetC

P
sfC

P
hfC

P
processC

TpuncoverC

T
pcoverC

TrcoverC

PrebootC

T
runcoverC

P
repairC

T
repairC

P
upC

T
2

sfC

[gnA]

[gnB]

T1

[g
uA

]

[guC]
[g

uA
]

T
switch1

Treturn1

P
switch1

P
nodeA

P
nodeC

Tswitch2

[g
uC

]

Pswitch2 PnodeB

Treturn2

[guB]

T
2

[g
uB

]

g
uA

: #P
upA

==1

g
uB

: #P
upB

==1

guC: #PupC==1

g
nA

: #P
nodeA

==0

gnB: #PnodeB==0

Fig. 6. SRN model for the service

3.2 SRN Model for the Service Availability

Figure 6 shows the SRN combining together the user and system model. The
right part of Fig. 6 shows the SRN for the system model. When the service is
first started, all three nodes are up, which is represented by a token in PupA,
PupB and PupC , respectively. Service 1 is running on node A while service 2 is
running on node B. For node A, there can be either service process fault with
rate λsfA, or the hardware fault with rate λhfA. The fault is detected by the
health checking mechanisms in the Availability Management Framework, which
is represented by transitions TsfdetA and ThfdetA.

For node A, the recovery actions are represented in the SRN model by to-
kens in place PprocessA, PrebootA, or PrepairA. The firing of TpcoverA, TrcoverA or
TrepairA means the fault is successfully recovered by component restart, node
restart, or manual repair, while firing of TpuncoverA or TruncoverA means the
fault is not covered by the corresponding recovery mechanism and escalated to a
higher level recovery action. We assume manual repair can always fix the fault.

Node B has similar behavior as node A, with possibly different rates and
coverage factors for these events. For node C, the failure behavior of its com-
ponents is slightly different. Since they act as standby components, we assume
software faults will not occur on node C as long as neither service is switched
onto it. When a switchover occurs, however, either T 1

sfC (guarded by gnA) or
T 2

sfC (guarded by gnB) or both will be enabled depending on the switched ser-
vice(s) on C, and software failure could occur. The corresponding transition will
be disabled again after the service is switched back.

116 D. Wang and K.S. Trivedi

A token in place PnodeA, PnodeB or PnodeC means a service process is hosted
on the corresponding node A, B, or C. Initially there is one token in PnodeA

and one in PnodeB . For node A, when the reboot action is taken, indicated by
the firing of either transition TpuncoverA or ThfdetA, a token is put into place
Pswitch1 in addition to place PrebootA to start the switchover process. If node C
is up (guarded by function guC) and the service token is in PnodeA, Tswitch1 will
be enabled to switch to service process to the standby node C. When node A
is recovered from the fault, Treturn1 will be enabled (guarded by function guA)
and the firing of Treturn1 indicates that the service is switched back to node
A. The switchover of the service process on node B can be similarly done. As
long as node C acts as a primary for either call processing service 1 or service
2 (represented by a token in PnodeC), it can no longer be the primary for the
other service. This is guaranteed by the inhibitor arcs from PnodeC to Tswitch1
and Tswitch2. The guard functions in the system model are shown in Table 2.

Table 2. Guard functions for the system model in Fig. 6

guard function true condition description
guA #PupA = 1 node A is up
guB #PupB = 1 node B is up
guC #PupC = 1 node C is up
gnA #PnodeA = 0 primary for service 1 is on node C
gnB #PnodeB = 0 primary for service 2 is on node C

When the user makes a call, he may send multiple call processing requests,
such as call setup, call feature invocation, or call teardown, to different appli-
cation servers in the media gateway controller. The user behavior during this
procedure is described by the user behavior graph in Fig. 1(b): state iP, i = 1, 2
is the call processing state which requires application server i to be up; state
iT, i = 1, 2 is the user talking state in which neither server is required. When the
user is in state 1T , with probability p11 the user will invoke a call feature that
needs processing in application server 1, with probability p12 the user will in-
voke a call feature that needs processing in application server 2, with probability
p1E the user will terminate the call without requesting additional call features.
And similarly for state 2T . The left part of Fig. 6 shows the corresponding SRN
model which is similar to Fig. 4.

For simplicity and consistency, we still use the ‘request processing state’ and
‘user think state’ to refer to the ‘call feature processing state’ and the ‘user
talking state’ in our example user model. We assume the call setup is handled
by application server 1, therefore there is a token in place P1P when the call
session first starts. The guard function g1 returns true when application server
1 is unavailable and guard function g2 returns true when application server 2
is unavailable. From the system model in Fig. 6, g1 and g2 can be expressed in
Table 3.

Modeling User-Perceived Service Availability 117

Table 3. Guard functions for the user model in Fig. 6

guard functions true condition
g1 (#PupA = 0 and #PnodeA > 0) or (#PupC = 0 and #PnodeA = 0)
g2 (#PupB = 0 and #PnodeB > 0) or (#PupC = 0 and #PnodeB = 0)

We assume the call processing request is served quickly enough that the
processing time can be neglected. Therefore the timed transitions T1P and T2P

in Fig. 4 are replaced by immediate transitions in Fig. 6, and are guarded by g1
and g2, respectively.

4 Numerical Results

In this section we evaluate the service availability under various input parame-
ters using the SRN model of the previous section. The default parameter values
used in the model are shown in Table 4. For comparison purposes, we also draw

Table 4. Default parameters used in the model

Parameter Default value Description
MTTFsft 336 hours software MTTF for each service unit
MTTFhd 672 hours hardware MTTF for each service unit
fdetect 7200 hour−1 detection rate for sw/hw faults
cproc 0.95 coverage factor for component restart

creboot 0.9 coverage factor for node restart
MTTRproc 10 seconds mean time for component restart

MTTRreboot 3 minutes mean time for node restart
MTTRrepair 8 hours mean time for manual repair

S 5 minutes user think time in state iT, i = 1, 2
pi1 0.4 value for pi1 in the user model, i = 1, 2
pi2 0.3 value for pi2 in the user model, i = 1, 2
piE 0.3 value for piE in the user model, i = 1, 2

the curves for steady-state system availability and the lower bound of service
availability. The former is computed as the probability that both servers are
up in steady state, and corresponds to the ‘System’ curve in the figures in this
section. The latter corresponds to the ‘SA-LB’ curve and can be viewed as the
service availability with infinite user think time. It is computed by hierarchically
solving the user model and the system model, i.e., first use the system model to
acquire pi i = 1, 2, the steady-state probability that server i is up, then assign pi

as the transition probability for TiP and 1 − pi for Tfaili in the user model, and
solve the user model to get the probability that the token enters the absorbing
place PE .

118 D. Wang and K.S. Trivedi

0 0.5 1 1.5 2 2.5 3 3.5 4
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
Service availability vs. MTTF

α

−
Lo

g 10
(1

−
S

A
)

System
SA−5min
SA−2min
SA−0.5min
SA−LB

(a) SA vs. MTTF

0 0.5 1 1.5 2 2.5 3 3.5 4
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
Service availability vs. MTTR

β
−

Lo
g 10

(1
−

S
A

)

System
SA−5min
SA−2min
SA−0.5min
SA−LB

(b) SA vs. MTTR

0 1 2 3 4 5 6 7 8 9 10
3.95

4

4.05

4.1

4.15

4.2

4.25

4.3
Service availability vs. MTTF and MTTR

γ

−
Lo

g 10
(1

−
S

A
)

System
SA−5min
SA−2min
SA−0.5min
SA−LB

(c) SA vs. MTTR and
MTTF

Fig. 7. Service availability under different MTTFs and MTTRs

4.1 Service Availability vs. MTTF and MTTR

We first study the impact of system MTTF and MTTR on service availability.
In Fig. 7, three service availability curves are drawn with 0.5, 2 and 5 minutes
user think time. Figure 7(a) shows the service availability under different system
MTTF, where the default MTTFsft and MTTFhd values in Table 4 are multi-
plied by a factor α ranging from 0.2 to 4. The x-axis shows the values for α, and
y-axis shows − log10(1 − SA), which computes the number of 9s of the service
availability. Figure 7(b) varies the MTTR parameters in Table 4 (MTTRproc,
MTTRreboot, MTTRrepair, MTTRswitch) by multiplying them with factor β
ranging from 0.2 to 4, and the x-axis shows β values. Figure 7(c) multiplies both
MTTF and MTTR parameters by factor γ ranging from 0.1 to 10 while keep-
ing the system availability constant. From these figures it is obvious to see that
the service availability increases with MTTF and decreases with MTTR. It is
also worth noticing from Fig. 7(c) that while maintaining the system availability
unchanged, longer MTTF and MTTR actually improve the service availability
within the context of this paper. This is because the service availability can be
viewed as the joint availability [3] at the request-arrival times during the user
session, and the joint availability is higher when the system has longer MTTF
and MTTR. From Fig. 7(a) and 7(b) we can see that the improvement is mainly
caused by the longer MTTR, since the distance between SA curves and SA lower
bound curve remains the same as MTTF increases, while the distance becomes
larger as MTTR increases. Using the default parameters in Table 4, the service
availability is 0.999903, the system availability is 0.999938, and the SA lower
bound is 0.999896.

4.2 Service Availability vs. Coverage Factors

Figure 8 shows the impact of coverage factors on the service availability. We
change the cp and cr values in Table 4 by adding θ, i.e., cp = 0.95+θ, cr = 0.9+θ,
where θ ranges from −0.1 to 0.04. The x-axis shows the θ value and y-axis shows

Modeling User-Perceived Service Availability 119

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04
3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25
Service availability vs. coverage factors

θ

−
Lo

g 10
(1

−
S

A
)

System
SA−5min
SA−2min
SA−0.5min
SA−LB

Fig. 8. SA vs. coverage factors

−5 −4 −3 −2 −1 0 1 2 3
3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4
Service availability vs. think time

Thinking time [ln(S)]

−
Lo

g 10
(1

−
S

A
)

System
SA
SA−LB

Fig. 9. SA vs. user think time

log10(1 − SA). As seen from the figure, the service availability increases with
coverage factors, and as the coverage factors increase, the SA curves become
close to the SA-LB curve. The reason is that increasing coverage factors avoids
higher level recovery actions which cost longer time than lower level recovery.
Therefore it is equivalent to reducing the MTTR. As we observed from Sect. 4,
smaller MTTR reduces the service availability improvement.

4.3 Service Availability vs. User Think Time

Figure 9 shows the service availability under different user think time S. S is var-
ied from 1 second to 12 minutes. The x-axis is ln(S), and y-axis is log10(1−SA).
As shown in the figure, the service availability drops as the user think time in-
creases. When S goes to infinity, the SA will converge to the lower bound of SA.
It can also be seen that when user think time is small, the service availability
is even higher than the system availability. This can be explained by the fol-
lowing two factors: first, the joint availability for Markov models JA(t, x) will
increase and converge to the instantaneous availability A(t) as x decreases to
0. Shorter user think time leads to smaller x. As we mentioned in Sect. 4, the
service availability is similar to the joint availability in this aspect. Second, the
system availability is the probability that both application servers are up. While
in the user behavior model the user may only access one application server dur-
ing the whole session. The probability that one server is up is larger than the
system availability. Therefore the service availability can be greater than the
system availability, although it may require parts of the system to be up for
multiple times.

4.4 Service Availability vs. Session End Probability

Figure 10 shows the impact of session end probability to the service availability.
In this figure we set p1E = p2E and vary them from 0.1 to 0.9. As shown in
the figure, the service availability increases with the session end probability. The

120 D. Wang and K.S. Trivedi

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5
Service availability vs. session end probability

Prob. to session end (p
1E

)

−
Lo

g 10
(1

−
S

A
)

System
SA−5min
SA−2min
SA−0.5min
SA−LB

Fig. 10. SA vs. session end prob

0 1 2 3 4 5 6 7 8 9
−4

−2

0

2

4

6

8

10
x 10

−3 Utility vs. fault detection rate

ln(r
det

)

U
til

ity

System
SA−5min
SA−2min
SA−0.5min
SA−LB

Fig. 11. Utility vs. detection rate

reason that the service availability is greater than the system availability is the
same as in Sect. 4.3: as the session end probability increases, the number of
requests in the session is reduced. Since each request requires part of the system
to be up which has a higher probability than the system availability, the service
availability may exceed the system availability when p1E and p2E are large.

4.5 Impact of Detection Rate

When a fault occurs, it is detected by the Availability Management Framework
using periodic health checking mechanisms. The higher the checking rate, the
faster the fault can be detected, on the other hand, the more the system perfor-
mance is degraded. In this section we study the tradeoff between service avail-
ability and performance under various fault detection rates. To do the analysis
we make the following assumptions:

1. the system can perform at most X health checks per hour.
2. health checking at rate x utilizes x

X ×100% computing power, thus reducing
x
X × 100% of the maximum throughput.

3. the reward rate for availability gain is C1, and the penalty rate for perfor-
mance loss is C2.

Based on the assumptions above, we can write the utility function U(r) as fol-
lows:

U(r) = C1 ∗ [SA(r) − SA(r0)] − C2 ∗ [DE(r) − DE(r0)]
= C1 ∗ [SA(r) − SA(r0)] − C2 ∗ (r − r0)/X

where SA(r) is the service availability with detection rate r and DE(r) is the
percentage of throughput degradation. r0 is the minimum detection rate used in
the model.

We choose C1 = C2 = 1, X = 7.2 × 105h−1, and vary the detection rate
r from 1 per hour to 7200 per hour. Of course the parameters can be changed

Modeling User-Perceived Service Availability 121

for different utility functions. Figure 11 shows the utility function with various
detection rates. The x-axis is the natural logarithm of the detection rate r, y-axis
is the utility function. From the figure it can be seen that when the detection
rate is low, it is better to sacrifice a small percentage of performance to gain
a much higher service availability; while when the detection rate is high, it is
better to sacrifice availability for performance.

5 Conclusions

In this paper we evaluate user-perceived service availability by taking into con-
sideration the user behavior model. The formulas for efficient service availability
computation are derived for CTMC-based system model and for DTMC-based
user model which allow arbitrary sojourn time distributions in each state. In
order to enhance the model to characterize various aspects of user/system be-
havior, and yet avoiding the manual construction of large state-space models,
we advocate the use of a higher level modelling formalism based on Stochastic
Reward Nets (SRN). We have proposed an approach to combine the SRN-based
user model and system model for service availability computation, and applied
this approach to an example SAF-compliant MGC architecture.

We numerically solve the combined SRN model to compute the service avail-
ability. Various factors that influence the service availability are identified, such
as mean time to failure, mean time to repair, fault coverage factors, user think
times, session end probability, and fault detection rate. Service availability under
these factors is evaluated and compared to system availability and service avail-
ability lower bound. The numerical results show that while keeping the system
availability constant, longer MTTF and MTTR can increase the service avail-
ability in the context of this paper. On the other hand longer user think time can
decrease the service availability. The tradeoff between availability improvement
and performance degradation is also analyzed using the SRN model.

Acknowledgements

We thank Veena Mendiratta of Lucent and David Penkler of HP for many insight-
ful discussions on VoIP and SAF-compliant architecture modeling. We thank
Service Availability Forum for their funding to support this research.

References

1. http://www.saforum.org, last checked on May 24th, 2005.
2. R. E. Barlow and F. Proschan. Mathematical Theory of Reliability. New York:

John Wiley and Sons, 1965.
3. A. Birolini. Quality and Reliability of Technical Systems: Theory-Practice-

Management. Springer-Verlag, Berlin, 1998.
4. M. Calzarossa and D. Ferrari. A sensitivity study of the clustering approach to

workload modeling. Performance Evaluation, 6:25–33, 1986.

122 D. Wang and K.S. Trivedi

5. M. Calzarossa, R. A. Marie, and K. S. Trivedi. System performance with user
behavior graphs. Performance Evaluation, 11(3):155–164, 1990.

6. G. Ciardo, A. Blakemore, Jr. P. F. Chimento, J. K. Muppala, and K. S. Trivedi.
Automated generation and analysis of markov reward models using stochastic re-
ward nets. In C. Meyer and R. Plemmons, editors, Linear Algebra, Markov Chains
and Queuing Models, volume 48, pages 145–191. Springer-Verlag, 1993.

7. T. Dahlberg and D.P. Agrawal. Task based reliability for large systems: A hi-
erarchical modeling approach. In Proc. of the 22nd Intl. Conference on Parallel
Processing, Volume III Algorithms & Applications, pages 284–287, Chicago, IL,
August 16-20, 1993.

8. C. R. Das and J. Kim. A unified task-based dependability model for hypercube
computers. IEEE Trans. Parallel Distrib. Syst., 3(3):312–324, 1992.

9. G. Florin and S. Natkin. Les reseaux de petri stochastiques. Technique et Science
Informatiques, 4(1):143–160, 1985.

10. S. Garg, Y. Huang, C. M. R. Kintala, S. Yajnik, and K. S. Trivedi. Performance
and reliability evaluation of passive replication schemes in application level fault
tolerance. In Intl. Symp. on Fault-Tolerant Computing (FTCS-29), June 1999.

11. Y. Huang and C. M. R. Kintala. software implemented fault tolerance: Technolo-
gies and experience. In Intl. Symposium on Fault Tolerant Computing, pages 2–9,
Toulouse, France, June 1993.

12. M. Kaaniche, K. Kanoun, and M. Martinello. A user-perceived availability eval-
uation of a web based travel agency. In Intl. Conf. on Dependable Systems and
Networks (DSN’03), pages 709–718, San Francisco, California, June, 2003.

13. K. C. Kapur and L. R. Lamberson. Reliability in Engineering Design. John Wiley
& Sons, New York, 1977.

14. K. W. Lee. Stochastic models for random-request availability. IEEE Transactions
on Reliability, 49(1):80–84, March 2000.

15. E. E. Lewis. Introduction to Reliability Engineering. John Wiley & Sons, New
York, 1987.

16. M. A. Marsan, G. Conte, and G. Balbo. A class of generalized stochastic petri nets
for the performance evaluation of multiprocessor systems. ACM Transactions on
Computer Systems, 2(2):93–122, May 1984.

17. M. K. Molloy. Performance analysis using stochastic petri nets. IEEE Trans. on
Computers, C-31(9):913–917, Sep 1982.

18. W. Xie, H. Sun, Y. Cao, and K. S. Trivedi. Modeling of user perceived web-
server availability. In Proc. of IEEE Intl. Conf. on Communications (ICC 2003),
Anchorage, Alaska, May 11-15, 2003.

Dependable Distributed Computing Using
Free Databases

Christof Fetzer1 and Trevor Jim2

1 Technische Universität Dresden, Fakultät Informatik, Dresden, Germany
christof.fetzer@inf.tu-dresden.de
http://wwwse.inf.tu-dresden.de

2 AT&T Labs – Research, 180 Park Avenue, Florham Park, NJ 07932, USA
trevor@research.att.com

Abstract. Designing and programming dependable distributed appli-
cations is very difficult. Databases provide features like transactions and
replication that can help in the implementation of dependable applica-
tions. There are in particular various free databases that make it econom-
ically feasible to run a database on each computer in a system. Hence,
one can partition database tables across multiple hosts to harness the
processing power and disks of multiple machines. We describe a system,
DOSE, that simplifies partitioning tables across multiple hosts. DOSE
exposes the partitions to the programmer rather than giving the illusion
of a single table. Our focus is on providing a simple implementation that
works for freely-available databases, on automatic tuning of the parti-
tions for best performance, and on applying the fault tolerance mecha-
nisms of the databases to build dependable distributed systems. We show
how we use this system to implement a distributed work queue.

1 Introduction

For a few decades researchers and practitioners have been trying to harness
the power of networked computers to build systems. Different architectures
and mechanisms like group communication have been proposed to achieve this.
One successful example is the Google model which uses software to build a
reliable system from unreliable components [5]. Using components with the
best price/performance one can minimize the hardware expenses dramatically.
We call such a system a RASC (Reliable and Available System from COTS
components).

Mining large amounts of data is one application domain where RASCs with
their cheaper but typically more unreliable hardware and software are deployed.
Up to a few years ago, most large data mining jobs were running on expensive
SMP machines. With the advent of cheap commodity computers, many of these
jobs are now running on computing clusters.

Coping with hardware and software failures is nontrivial. The dependability
community has been investigating many mechanisms like group communication,
check pointing, and logging to build dependable systems to cope with failures.

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 123–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

124 C. Fetzer and T. Jim

Many of these concepts are unfamiliar to application programmers who would
build a RASC. Many application programmers, however, know how to write pro-
grams using databases. Using databases as the components visible to application
programmers might therefore be a good match with their skills.

In this paper we are mainly interested in applications like large data mining
jobs that store and query very large amounts of data in a database. To keep
the promise of substantial cost reductions of RASCs, the use of free operating
systems and free databases like MySQL is required. While there are commer-
cial databases that support distributed and parallel operations, the currently
available free databases are neither distributed nor parallel nor do they support
distributed transactions. Furthermore, the free databases are not always very
robust either. During our tests we experienced multiple database crashes and at
least one of them resulted in an unrecoverable data corruption.

In this paper we introduce a middleware system (called DOSE: Database
Oriented Systems Engineering) that supports building RASCs with the help of
free databases. The idea is to run database servers on most computers in a system
to harness the parallelism of the multiple CPUs, disks, and network adapters not
only to maximize the throughput but also the dependability of the system.

DOSE simplifies the partitioning and replication of database tables across
multiple hosts. It supports heterogeneous systems and in particular, applications
using multiple computing clusters. DOSE provides a distributed request queue
to simplify the implementation of worker parallelism without the need of having
a centralized work dispatcher. We show how to keep the databases consistent in
case of database and computer crashes using the MySQL replication mechanism
that provides weak semantics.

In Section 2 we introduce the concepts underlying the design of DOSE and
its API. Section 3 describes our implementation of a distributed work queue
and Section 5 describes several performance measurements of DOSE. Before we
conclude the paper in Section 7 we discuss related work in Section 6.

2 DOSE Concepts and API

Partitioning. Application programs can store and query data in one or more
database tables. Each table consists of a finite number of rows. DOSE supports
the partitioning and replication of tables. The partitioning of tables is done with
the help of a root table (see Figure 1). The root table itself can be replicated but
it is the only table that cannot be partitioned.

The percentage of rows stored in a partition is given by the weight of the
partition over the sum of all weights of all partitions of the table. How the rows
of a table are partitioned is under the control of the user. The idea is that a user
of DOSE can define how to compute a unique MD5 hash (see RFC1321) for a
row of a table. This MD5 hash is used to assign rows to partitions according
to the weight of the partitions; by using the hash we get a uniform distribution
for the rows. We often use the MD5 hash as the primary key but it does not need

Dependable Distributed Computing Using Free Databases 125

Table Host Weight

Request flagstaff 25

Request scottsdale 25

Request tucson 50

HostStatus xserve-issr01 50
...

Fig. 1. The root table maps table partitions to hosts. In this example, table Request
is partitioned across three hosts with host tucson getting 50% of the rows and hosts
scottsdale and flagstaff each getting 25%.

to be a key nor does it need to be stored in the table. More details about the
partitioning are described below.

Currently, the weights of the partitions are static during one execution. Our
applications are all periodic in the sense that a brand new execution is started
after the previous one has terminated. For example, a web spider application
might be rerun as soon as the previous run terminates. A repartitioning can
therefore be done between such executions.

Replication. MySQL supports master/slave replication. A master keeps a log
file of all transactions it executes. This log file can be read and replayed by slave
databases to keep their databases in sync with the master database. The fail-
over from the master to one of its slaves needs additional software. We prefer
solutions where the fail-over is transparent to the clients of the database. MySQL
clients reconnect automatically in case the connection to the server is lost. This
permits one to use a simple IP take-over mechanism.

We have previously designed and implemented a general IP take-over mecha-
nism [4]. In case the master crashes an election determines a new master amongst
the slaves of the master. The new master takes over the IP address used by
the clients to connect to the database. Alternatively, there exist open source
projects like HA-MySQL that provide IP take-over functionality targeted to-
wards MySQL.

The advantage of this type of replication mechanism is the decoupling of the
master and the slaves, e.g., slow slaves do not slow down the master. The trade-
off is that when failing over from the master to a slave, some already committed
transactions might get lost. In particular, in the context of a partitioned table
this can lead to data inconsistencies, since transactions depending on such com-
mitted but lost transactions are not necessarily rolled back. We show in Section 3
how to deal with this issue in the context of the distributed work queue.

API. The DOSE API functions are written in C for increased speed (over our
original PERL implementation). Most of our application code is written in PERL
but the interfacing to the C code is straightforward. Each partition is represented
by a handle which is needed to access the partition. We provide an iterator to
iterate over all partitions of a table. However, for queries regarding a row for
which the MD5 key is already known, one does not have to iterate over all
partitions - instead one computes the handle of the partition via the MD5 key.

126 C. Fetzer and T. Jim

A user has control over how rows are spread across the partitions of a table.
DOSE provides a function create md5 key to compute an MD5 key for a row; it
also returns the handle for the partition where the key is stored. The key deter-
ministically selects a partition based on the weight of the individual partitions.
To do so, we compute a mapping from the least significant byte of a key onto
the set of handles of the table. For systems with large numbers of partitions one
would use more than one byte.

For example, an MD5 key for a table “person” that is computed from the
concatenation of two strings familyname, firstname, and some integer ins can
be computed like this:

create_md5_key("person", &handle, key, "%s%s%d",
familyname, firstname, ins);

The format string “%s%s%d” has the same meaning as for the C-library
function printf; this enables gcc to check the type safety of create md5 key’s
arguments. Note that it is up to the user to select a format string and arguments
that will produce a unique hash for each row. For example, if (“myers, “al”, 3)
and (“myer, “sal”, 3) are both possible (familyname, firstname, ins) values, then
the code above would give them the same hash, so, a different format string
should be used. The computed key does not need to be stored in the table.
However, the user can store the key in the table and use it as the primary key
if this would shorten the length of the primary key.

As long as one has sufficient information to compute the MD5 key at the time
of a query, one can access a row without iterating over partitions. In particular,
when inserting a new row in a table there is always sufficient information to
compute the MD5 key. Typically, we make sure that for all queries that use the
primary key there is sufficient information to compute the partition.

Queries are written in SQL and are executed by calling the DOSE function
do query. For example, to retrieve all the weights for a given host from the root
table, one would issue the following command:

do query(handle, "SELECT weight FROM ROOT WHERE Host=’%s’",host);

Note that the handle for the root table is returned by the DOSE initialization
function.

The API function fetchrow retrieves the next row that was affected by the
previous query. To retrieve the weight of the next row, one can write:

fetchrow(handle, "%d", &weight);

This returns 1 if the fetch is successful, and 0 if there are no more rows.
As for function create md5 key, gcc can check the type safety of functions

do query and fetchrow.

Dependable Distributed Computing Using Free Databases 127

3 Distributed Request Queue

We used the DOSE functions introduced in the previous section to implement
a distributed request queue. The aim of the distributed request queue is to help
distribute requests amongst a set of workers.

3.1 Concepts

The distributed request queue contains a set of requests to be processed by
the workers. A worker processing a request can insert a new request into the
request queue. An idle worker tries to retrieve a request from the request queue
for processing. Requests can have either at least once semantics or at most once
semantics. Requests with at least once semantics can and need to be reprocessed
in case the worker executing the request fails. Hence, they are a little more
complicated to implement than requests with at most once semantics. So far, all
the requests we have implemented have had at least once semantics.

Internally, each request is associated with exactly one of the following five
states (see Figure 2): unprocessed, pending, retryable, processed, or failed. A re-
quest is inserted in state unprocessed. When a worker retrieves the request, it
becomes pending. When the worker successfully processes the request, the re-
quest transitions to state processed. If the processing of the request fails but the
worker does not crash during the processing, its state becomes failed. A request
with at least once semantics can be reexecuted after a timeout period, i.e., the
state of the request transits to state retryable. If the processing time of a pend-
ing request approaches the timeout period, the worker executing the request can
extend the timeout to prevent other workers from reprocessing the request.

keep_pending

unpro−

cessed pending

retryable failed

processed

new_request

retireretrieve

timeout retrieve
failed

Fig. 2. States and associated state transitions for requests with at least once semantics

3.2 API

All transitions of Figure 2—with the exception of transition timeout—are initi-
ated by a worker executing a corresponding API function provided by DOSE.
Transition timeout occurs when a worker tries to retrieve a request. In this case,
the retrieve function might check if a pending request has become retryable.

128 C. Fetzer and T. Jim

We provide an additional function that permits a worker to schedule the
reexecution of a pending request after a given point in time. This rescheduling is
mapped on the same timeout mechanism that enforces the at least once semantics
of requests.

3.3 Load Manager

Each worker machine runs a load manager. The purpose of the load manager is
to keep worker machines busy, but not too busy. Ideally, we would like to keep
the CPUs of the worker host 100% busy. The issue is that the CPU usage of
workers processing a request can change dramatically, e.g., a worker might first
be blocked waiting for the transfer of some data and after it gets the data it
might use all the CPU cycles it can get.

To cope with such drastically changing load conditions, a local load manager
is given three load thresholds: Lmin, Lmax and Lsus. The load is the average
number of processes in the running queue during the last 1 minute period. The
task manager tries to keep the load above Lmin as long as there are requests to
be processed. Typically, Lmin is chosen such that even if there are fluctuations
in the CPU usage of requests, the CPUs of the worker host can still be kept
100% busy.

The load manager checks the load of the worker machine periodically (every
minute). If the load drops below Lmin, the load manager spawns new worker
processes. The number of worker processes spawned is calculated based on the
current estimate of the average load induced by a worker process. However, to
avoid big fluctuations in the number of worker processes, we restrict the number
of processes that can be spawned within a period.

When the load of a worker machine reaches Lmax, the load manager starts
signaling worker processes to terminate as soon as they finish processing their
current request. The number of signaled processes is also based on the current
estimate of the average load induced by a worker process and again we restrict
the maximum number of worker processes that can be signaled per period.

If the load of the worker processes can change rapidly and the time to process
a single request can be long, the load can rise even after the load manager
started to signal worker processes that they should terminate. If the load rises
above threshold Lsus the load manager starts suspending worker processes. As
soon as the load drops below Lsus the load manager starts to unfreeze worker
processes.

The load manager is automatically restarted when it crashes, so that it is not
a single point of failure. The state of the load manager is the status of the current
worker processes. Because crashes of the load manager are very infrequent, we
chose a very simple recovery scheme in which all workers terminate when the
load manager terminates. To achieve this, a worker process checks if the load
manager has terminated before retrieving a new request. This is an efficient
operation since the worker only needs to query the id of its parent process (via
a system call). However, during startup the load manager must discover and
unfreeze all currently suspended worker processes.

Dependable Distributed Computing Using Free Databases 129

4 ACID Issues

Most databases are able to provide ACID (Atomicity, Consistency, Isolation,
Durability) properties to their clients. However, these properties are not nec-
essarily guaranteed for all likely failures (e.g., disk failure). Even if a database
is replicated on a different host, a failure might cause these properties to be
violated: already committed transactions can be lost (as mentioned in Section
2), i.e., the durability property can be violated. One can address some issues by
adding special purpose hardware, e.g., one could use a RAID connected via a
SAN to multiple hosts to mask disk failures and to be able to restart a database
on a different host after a crash.

Our goal is to build a RASC, i.e., a dependable distributed computer system
from cheap components. SANs and RAIDs are more expensive than adding local
disks. For large systems, disk failures are non-negligible and hence, we need to
address this issue in software. We describe two solutions for the distributed
request queue (Section 3). First, we need to state more precisely our system and
replication model.

4.1 System and Replication Model

We assume that a system contains a set of master databases. A client issues
a transaction on exactly one master database. A master database has a set of
backup databases. The set of backup databases is finite and might be empty.
A master database logs all transaction in a replication log file and this log file
is incrementally transfered to the backup databases. A backup database replays
the replication log to stay in sync with the master database.

Definition 1 (received). We say that a transaction is received by a backup
database iff the backup database has gotten all log information from the master
database that is needed to replay the transaction.

Definition 2 (stable). A request R is associated with a set of transactions TR

that were issued by R. We say that a request R is stable iff all transactions in
TR have been received by all backup databases of R.

Definition 3 (inconsistent). If a master database server crashes before a re-
quest is stable, switching to a backup database will make this request inconsistent:
there exists a transaction T in TR that was committed on the master database
but that was not received on all backup databases.

4.2 Solution

Instead of avoiding inconsistent requests, we only need to identify all inconsistent
requests after a master database has crashed. Inconsistent requests with at least
once semantics can be marked as unprocessed and hence, will be automatically
reexecuted. If databases crashes are sufficiently rare, the expected cost of a crash

130 C. Fetzer and T. Jim

can be minimized even if the execution time of a request is large. Note that
inconsistent requests with at most once semantics need to be marked as failed
because they cannot be reexecuted.

We introduce an approach to identify inconsistent requests. This enables us
to use local replication logging with lazy flushing. The idea is that we order the
retiring of requests by assigning them time stamps upon retiring and periodically
determine a timestamp SR such that all requests retired before SR are stable
and hence, cannot become inconsistent by a crash of a master database.

Note the assignment of a timestamp can be done very efficiently. We just
store in a request R, at the time of retirement of R, the current clock value of
the database that is retiring R. There is no need to synchronize the clocks of the
databases or the clocks of the worker machines.

More formally, each retired request R has a timestamp T (R) at which it was
retired. For each partition of the request queue, we periodically compute and
store a timestamp SR such that:

– for all retired requests R: T (R) < SR ⇒ R is stable, and
– SR is maximum in the sense that if the computation of SR was initiated at

time S (wrt to clock of the local database) and there exists a retired and
stable request R such that SR < T (R), then S ≤ T (R).

Operationally, we compute SR as follows. First, we insert a dummy request
record into each partition of the request queue. The dummy record is assigned
the local clock value of the database. Second, we determine the current log
position (CLP) for each master database MS. Third, we determine the set of
all slave servers for MS, and wait until all slave servers have reached position
CLP . Fourth, we convert sequentially all dummy records into a “stable record
marker” (without changing the timestamp) by replacing the previous “stable
record marker.” The value SR of a partition is given by the timestamp of the
“stable record marker” stored in this partition.

Upon switch-over from a master database to a backup database each request
R (with at least once semantics) that was retired at or after time SR (i.e.,
T (R) ≥ SR) needs to be transitioned from state processed to state unprocessed.
Rows associated with such requests can be garbage collected.

A request R with at most once semantics and T (R) ≥ SR needs to be
transitioned to state failed. If this is not acceptable, a state dependent checker
that verifies the completeness of a request might be a good option. This request
checker can compute TR based on the records it finds in the database that are
associated with TR. Often such a request checker is easy to implement if one
knows of the need for such a checker during the design of the database tables.

Note that such an application dependent request checker is an ideal addition
to the described solution: only requests with T (R) ≥ SR need to be check for
state completeness after a crash of a master database. Only requests that are
actually incomplete need to transitioned to state unprocessed or failed.

Dependable Distributed Computing Using Free Databases 131

4.3 Garbage Collection

Inconsistent requests and failed requests can leave records in the databases that
make the design of queries more difficult. For example, typically one wants
queries to include only those rows that were written by successful requests but
not by failed or inconsistent requests.

We wrote a simple garbage collector that removes all records that are not
associated with a processed or pending request. When retiring a request, a key
is stored within the request queue. In our applications this key is sufficient to
locate all rows associated with a request. (Actually, all rows written by a request
contain this key.) Our current garbage collector uses this fact but a more general
garbage collector can be programmed if needed.

Our garbage collector first determines all request keys that have been stored
in a row but that have not and will not be stored as the key of a successful
request. It uses the property that requests are eventually timed-out unless a
worker periodically extends the time-out of a pending request. Using the time-
out mechanism the garbage collector can run in parallel with the processing of
other requests and does not need to lock tables or rows.

5 Performance

We performed several performance measurements to evaluate the performance of
DOSE. In our performance measurements we used a Linux cluster consisting of 8
1.8GHz Pentium 4 machines (machine names: saguaro701 – saguaro708), an SMP
machine with four 1.6 GHz Xeon processors with hyperthreading (tucson), and
an Apple Xserve cluster consisting of 8 machines running Mac OS X (machine
names: issr01-issr08). The saguaro machines were running MySQL version 4.0.16-
standard. The MAC OS X cluster and tucson were running MySQL version
4.0.16-max.

5.1 Replication Overhead

MySQL implements replication by having the master database write a log
(“replication log”) of all transactions that modify the database. This log is writ-
ten in addition to the log file written by transaction-safe tables like InnoDB.
Slaves read the replication log file via a connection to the master database. We
are interested in two costs associated with replicating a database.

There is a cost associated with writing the log file and with transferring
the replication log from the master to its slaves. In this measurement series we
used four client machines and on each client there were 10 processes inserting
requests into the request queue. There was one master database (saguaro705)
and potentially one slave database (saguaro706).

We measured the throughput of five different configurations (see Figure 3):
(1) without logging; (2) logging to a local file; (3) the same as (2) except running
a slave database in addition, (4) the same as (2) but storing the replication log
remotely, and (5) the same as (3) but storing the replication log remotely.

132 C. Fetzer and T. Jim

no
 r

ep
lic

at
io

n
lo

g
(1

)

lo
ca

l r
ep

lic
at

io
n

lo
g

(2
)

re
pl

ic
at

ed
 lo

ca
l r

ep
 lo

g
(3

)

re
m

ot
e

re
pl

ic
at

io
n

lo
g

(4
)

re
pl

ic
at

ed
 r

em
ot

e
re

p
lo

g
(5

)

2100

2300

2500

2700

2900

3100

3300

3147.72

2667.46

2285.67

2849.06

2390.31

Fig. 3. Throughput of request queue for various replication configurations

Enabling the replication log resulted in a 13% throughput reduction (local
disk) and about 9.5% for remote logging. Even though the remote logging adds
additional network delays, the use of the additional remote disk more than com-
pensates for the network delays. Enabling local logging and one slave reduces the
throughput by about 27%. Remote logging is slightly better with a reduction of
only 24%. Note that even when the log file is kept remotely, slaves read the log
file through the database master.

The replication log is written before a transaction can be committed. It
is our understanding (from studying the manual and the source code) that
the replication log is however not flushed to disk before a transaction is com-
mitted. A synchronous flush would increase the performance penalty even fur-
ther.

5.2 Partitioned Request Queue

We have investigated the performance implications of partitioning the request
queue across multiple database hosts (see Figure 4). In this measurement we
varied the number of partitions between 1 and 8 and the number of client ma-
chines between 1 and 6 machines. Each client machine executed 10 processes
that inserted requests into the request queue. The machines used in this ex-
periment had similar performance, and hence, we used the same weight for all
partitions.

For a higher number of partitions, one client machine cannot saturate the
request queue. The throughput starts to level off and falls slightly for an increas-
ing number of partitions. If the number of client machines is however sufficiently
high, the speed up of the request queue is basically linear with the number of
partitions.

Dependable Distributed Computing Using Free Databases 133

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8

N
um

be
r

of
 in

se
rt

ed
 r

eq
ue

st
s

pe
r

se
co

nd

Number of partitions (10 clients/machine)

Insert Performance of Partitioned Request Queues

1 client machine
2 client machines
3 client machines
4 client machines
5 client machines
6 client machines

Fig. 4. Insert request queue throughput as a function of the number of partitions. The
number of client machines is varied between 1 and 6 machines. Each client machine
runs 10 client processes.

5.3 Load Manager

To make the job of the load manager difficult, we programmed a workload that
exhibits major CPU fluctuations (see Figure 5). Each request either sleeps for
up to 30 seconds or it keeps the CPU 100% busy for up to 30 seconds. We use
the following load thresholds: Lmin = 4, Lmax = 6, Lsus = 8. The load manager
keeps the load below the suspension threshold without ever actually suspending
any worker.

To visualize the behavior of the load manager when it has to suspend requests,
we used the same workload as in the previous measurement but we tightened the
load thresholds (see Figure 6): Lmin = 4, Lmax = 5, Lsus = 6. The load manager
had at some point to suspend two workers because it was not able to terminate
workers sufficiently fast to keep the load under Lsus. The load manager starts
to continue suspended workers as soon as the load drops below Lsus.

6 Related Work

Linda [3] provides a distributed shared memory called the “tuplespace” that is
similar to the networked MySQL databases we use in DOSE. A tuple corresponds
to a row of a table in DOSE. Linda programs can insert tuples into tuplespace
and extract tuples that match a simple pattern; this is sufficient for program-
ming things like distributed work queues. Support for tuplespace transactions
and fault tolerance is built in to some variants of Linda [2,1,10,7]. DOSE uses
the ACID properties of free databases like MySQL to achieve fault tolerance,
and it provides a much richer query interface (SQL) than Linda’s simple tuple

134 C. Fetzer and T. Jim

extraction operators. DOSE’s SQL interface is powerful enough for exploring
the state of a distributed application in progress; for example, you can formu-
late an SQL query to see how many requests are unprocessed, or how many
requests have been processed by a particular host. Furthermore, by exposing
SQL in the DOSE API we allow the programmer to optimize the performance
of tuplespace operations, as we did, for example, in our use of buckets as a
way to quickly select a request from the distributed request queue described in
Section 3.

0

2

4

6

8

10

12

09:00:0009:00:0009:00:0009:00:0009:00:00 10:00:0010:00:0010:00:0010:00:00
0

2

4

6

8

10

12

C
PU

 L
oa

d

W

or
ke

rs
Time

CPU Load
Workers

Terminating

Fig. 5. Behavior of load manager for requests with random load fluctuations. (Lmin =
4, Lmax = 6, Lsus = 8).

 0

 2

 4

 6

 8

 10

 12

14:00:0014:00:0014:00:0014:00:0014:00:00 15:00:00
 0

 2

 4

 6

 8

 10

 12

C
PU

 L
oa

d

W

or
ke

rs

Time

CPU Load
Workers
Suspended

Fig. 6. When the load manager cannot keep the load under Lsus it starts suspending
workers. It starts to continue workers as soon as the load drops below Lsus.

Dependable Distributed Computing Using Free Databases 135

Astrolabe [8,9] is a scaleable, fault-tolerant distributed information system
based on a peer-to-peer gossip protocol. The system is organized as a tree of
“zones,” each of which provides an SQL interface to a database of zone at-
tributes. The database of a parent zone is defined by SQL aggregate functions
over the databases of its children; thus, information about hosts (at leaf zones)
is summarized towards the root. Updates propagate rapidly in the hierarchy (in
tens of seconds), but Astrolabe does not support transactions as a primitive. The
zone tree represents a summary of the recent state of the hosts and resources
in the network, and can be used by loosely coupled applications to coordinate
distributed tasks. Although both DOSE and Astrolabe use SQL, their focus is
different. Astrolabe’s focus is its scaleable hierarchy, which leads to its use of
aggregate functions rather than arbitrary SQL to define the databases of its in-
ternal zones; the leaf zones are where Astrolabe would deploy any full-fledged
SQL databases. DOSE does not have any equivalent to Astrolabe’s hierarchical
zones, and instead focuses on collections of hosts running commodity databases.

Commercial databases such as Microsoft SQL Server and Oracle 9i provide
support for partitioning database tables across multiple servers. The different
partitions are considered parts of the same virtual database table, and users can
form SQL queries against the virtual table that the databases will answer by
transparently sending sub-queries to each distributed partition and constructing
the answer to the query from the answers to the sub-queries. In the database
research community this has been studied as the problem of “answering queries
using views” [6]. DOSE exposes the partitions to the programmer rather than
giving the illusion of a single table; our focus is on providing a simple imple-
mentation that works for freely-available databases, on automatic tuning of the
partitions for best performance, and on applying the fault tolerance mechanisms
of the databases to build dependable distributed systems.

7 Conclusion

Databases are becoming commodities: they are very widely deployed, and even
the cheap ones are mature and capable. Infrastructures for dependable distrib-
uted computing, on the other hand, are not commodities. Consequently, data-
bases are benefiting from orders of magnitude more development and testing
than any system for building dependable distributed applications.

DOSE is a small (currently, less than 2900 lines of code) and lightweight
framework that leverages the investment being put into commodity databases
towards building efficient and dependable distributed systems. Instead of build-
ing features such as transactions and replication into DOSE itself, DOSE relies
on the database for them. If the commodity database does not provide suffi-
ciently strong semantics for dependability (e.g., MySQL’s imperfect replication
implementation), DOSE provides just enough additional support to achieve the
desired semantics. Since databases are cheap, we can deploy them on every avail-
able computer; DOSE then provides enough infrastructure (a distributed request
queue,a load manager and an auto-placement of partitions) to enable program-
mers to easily create applications that use the available cycles efficiently.

136 C. Fetzer and T. Jim

References

1. B. Anderson and D. Shasha. Persistent Linda: Linda + transactions + query
processing, 1991.

2. David E. Bakken and Richard D. Schlichting. Supporting fault-tolerant parallel
programming in Linda. IEEE Transactions on Parallel and Distributed Systems,
6(3):287–302, 1995.

3. Nicholas Carriero and David Gelernter. How to Write Parallel Programs: A First
Course. MIT Press, 1990.

4. Christof Fetzer and Neeraj Suri. Practical aspects of IP take-over mechanisms.
In Proceedings of 9th IEEE International Workshop on Object-oriented Real-time
Dependable Systems (WORDS 2003), Capri Island, Italy, Oct 2003.

5. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file sys-
tem. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pages 96–108, Bolton Landing, NY, October 2003. ACM Press.

6. Alon Y. Halevy. Answering queries using views: A survey. The VLDB Journal:
The International Journal on Very Large Data Bases, 10(4):270–294, December
2001.

7. Sun Microsystems. Javaspaces service specification, version 1.1.
http://wwws.sun.com/software/jini/specs/jini1.1html/js-title.html, October 2000.

8. Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust
and scalable technology for distributed system monitoring, management, and data
mining. ACM Trans. Comput. Syst., 21(2):164–206, 2003.

9. Werner Vogels, Robbert van Renesse, and Ken Birman. The power of epidemics:
robust communication for large-scale distributed systems. SIGCOMM Comput.
Commun. Rev., 33(1):131–135, 2003.

10. P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. Tspaces. IBM Systems
Journal, 37(3):454–474, 1998.

A Compositional Framework for Real-Time
Embedded Systems�

Insik Shin and Insup Lee

Department of Computer and Information Science,
University of Pennsylvania, Philadelphia PA 19104, USA

{ishin, lee}@cis.upenn.edu

Abstract. While component technology has been widely accepted as a
methodology for designing complex systems, there are few component
technologies that have been developed to accommodate the character-
istics of embedded systems. Embedded systems are often subject to re-
source constraints as well as timing constraints. Typical scarce resources
include memory for cost-sensitive systems. Many techniques, developed
for reducing code size, often yield code size vs. execution time trade-
offs. Our goal is to develop a framework for supporting the composi-
tionality of resource and timing properties. The proposed framework al-
lows component-level resource and timing properties, which include the
resource/time tradeoffs, to be independently analyzed, abstracted, and
composed into the system-level resource and timing properties. In this
paper, we focus on the problem of composing the collective task-level
code size vs. execution time tradeoffs into a component-level code size
vs. execution time tradeoff.

1 Introduction

An embedded system consists of a collection of components that interact with
each other and with their environment through sensors and actuators. Current
embedded systems control a range of devices, from household appliances such
as refrigerators and ranges, to telephone and cellular connections, to anti-lock
brakes on automobiles and cockpit displays on aircraft. In spite of growing re-
search attention on embedded systems, there seem to be several issues that have
not been adequately addressed with regard to embedded system development.
In particular, even though component technology has been widely accepted as a
methodology for designing complex systems, there are few component technolo-
gies that have been developed to accommodate the characteristics of embedded
systems.

As embedded systems become more complex due to increased functionali-
ties, it is necessary to develop techniques and methods that facilitate the design
of large complex systems from subsystems. Component-based design has been

� This research was supported in part by NSF CCF-0429948, NSF CCR-0209024, and
ARO DAAD19-01-1-0473.

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 137–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 I. Shin and I. Lee

widely accepted as a methodology for designing large complex systems through
systematic abstractions and compositions. Component-based design provides a
means for decomposing a system into components, allowing the reduction of a
single complex design problem into multiple simpler problems, and for compos-
ing components into a system through component interfaces that abstract and
hide their internal complexity. Component-based design also facilitates the reuse
of components that may have been developed in different environments. Current
software component technologies focus on abstracting the functional aspects of
components and on validating the functional aspects of assemblies of compo-
nents through interfaces prior to their actual composition. However, prevailing
software component technologies do not support abstraction and composition
techniques for the non-functional aspects of components, e.g., timeliness, perfor-
mance, reliability, safety, and resource consumption, which are critical to embed-
ded software. Our goal is to develop a framework that supports compositionality
of the non-functional aspects of components, i.e., to develop a framework where
the system-level non-functional properties are established by composing together
independently analyzed component-level non-functional properties.

Most embedded systems involve real-time computations. Examples include
communication systems, sensor and actuator interfaces, audio and speech pro-
cessing subsystems, and video subsystems. A challenging problem for real-time
embedded systems is to analyze their schedulability, i.e., to determine whether
the timing constraints of a real-time embedded system are all satisfiable. A key
problem in designing real-time embedded systems is that most schedulability
analysis techniques are not compositional. In particular, there have been no
component interfaces that abstract the timing constraints of components, and
thus there has been no systematic mechanism to analyze the schedulability of
component assemblies through their interfaces.

Most embedded systems, unlike traditional general-purpose systems, are typ-
ically highly resource-constrained. They are often supposed to operate with lim-
ited amounts of resources, which include processor speed, memory, power, and
communication bandwidth. The resource-constrained aspect of embedded sys-
tems raises issues of abstracting the resource consumption of components and
predicting the resource consumption of the assembly of components before their
actual composition. In this paper, we propose a composition framework where
the system-level timing and resource-usage properties can be established by com-
posing independently analyzed component-level properties.

Memory is one of the key factors that determine the manufacturing cost of
an embedded system, especially when the embedded system is implemented as
an SOC (System On a Chip). Many techniques have been proposed for mem-
ory size reduction by reducing program code size. One promising technique for
code size reduction at the instruction set architecture (ISA) level is to use a
subset of normal 32-bit instructions compressed into a 16-bit format as in ARM
Thumb [8] and MIPS16 [22]. These 16-bit instructions are dynamically decom-
pressed by hardware into 32-bit equivalent ones before execution. This approach
can substantially reduce the program code size; however, it increases the number

A Compositional Framework for Real-Time Embedded Systems 139

of instruction cycles needed to execute, and thus, increases the execution time
of the program. For typical examples, the compressed code may require around
70% of the space of the original code, while executing 40% more instruction
cycles [7].

In this paper, we introduce a compositional framework for the code size vs.
execution time tradeoff, which can be obtained from the use of reduced bit-
width ISA [9]. We assume that each task in a component has its own code size
vs. execution time tradeoff. We present component techniques that can combine
the collective task-level tradeoff information as a component-level code size vs.
execution time tradeoff.

The rest of this paper is organized as follows: Section 2 describes the overview
of the proposed framework and gives the system model and assumptions. Section
3 presents the problem statement, and Section 4 provides related work. Finally,
we conclude in Section 5 with discussion on future research.

2 Our Compositional Framework Based on Periodic
Resource Model

Our goal is to develop a compositional framework for real-time embedded sys-
tems. In this section, we present an overview of our compositional framework
and provide the system models and assumptions of the framework.

2.1 Compositional Framework Overview

We consider a compositional framework, where components form a hierarchy
and resources are allocated from a parent component to its child components in
the hierarchy. The resources allocated to a single component are shared by the
workloads within the component and possibly by its child components, according
to a scheduling algorithm. We define a component Q as a triple (W, R, A), where
W describes a set of workloads (tasks) supported in the component, R describes
a set of resources available to the component, and A is a scheduling algorithm
which describes how the workloads share the resources at all times.

A resource is said to be dedicated if it is exclusively available to a single
scheduling component, or shared otherwise. In the proposed framework, we con-
sider two shared resource types: a time-shared resource and a non-time-shared
resource. A resource is said to be time-shared if it is available to a component at
some times but not available at all at the other times, or non-time-shared if it is
constantly available all the time at its partial capacity. The processor is a good
example of time-shared resources, and the memory space is a good example of
non-time-shared resources.

We consider that the resource requirements of a component is satisfied if
the resource demands of the component is no greater than the resource sup-
plies provided to the component. We now describe this notion more precisely.
Suppose that one or more resources, Rk, k ≥ 1, are available to a compo-
nent Q(W, R = {Rk}, A). For a component Q, its resource demand of a re-
source model Rk represents the collective resource requirements that its workload

140 I. Shin and I. Lee

set W requests under its scheduling algorithm A. The demand bound function
dbfRk

(W, i, A, t) of a component Q calculates the maximum possible resource
demands that W requests to satisfy the resource (timing) requirements of task
i under A within a time interval of length t. The resource supply of a resource
model Rk represents the amount of resource allocations that Rk provides. The
supply bound function sbfRk

(t) of Rk calculates the minimum possible resource
supplies that Rk provides during a time interval of length t. A resource model Rk

is said to satisfy a resource demand of W under A if dbfRk
(W, i, A, t) ≤ sbfRk

(t)
for all task i ∈ W and for all interval length t. We now define the schedulability
of a scheduling component as follows: a scheduling component Q(W, R, A) is said
to be schedulable, if the minimum resource supply of R can satisfy the maximum
resource demand of W under A, i.e.,

∀Rk ∈ R ∀i ∈ W ∀t > 0 dbfRk
(W, i, A, t) ≤ sbfRk

(t). (1)

We define a component abstraction problem as the problem of abstracting
the collective resource requirements, which a set of workloads demands under a
scheduling algorithm, as a single resource requirement, called resource interface,
without revealing the internal structure of the component, e.g., the number of
tasks and its scheduling algorithm. We formulate the problem as follows: given
a workload set W and a scheduling algorithm A, the problem is to find an
“optimal” resource model R such that a component Q(W, R, A) is schedulable.
Here, the solution R becomes the resource interface of the component C. The
optimality over the solution R can be determined with respect to various criteria
such as minimizing resource capacity requirements of various resources.

In a hierarchy of components, a parent component provides resource alloca-
tions to its child components. Once a child component Q1 finds an interface R1,
it exports the interface to its parent component. The parent component treats
the resource interface R1 as a single workload model T1. As long as the parent
component satisfies the resource requirements imposed by the single workload
model T1, the parent component is able to satisfy the resource demand of a child
component Q1. This scheme makes it possible for a parent component to supply
resources to its child components without controlling (or even knowing) how the
child components schedule resources internally for their own tasks.

2.2 System Models and Assumptions

As a workload model in the proposed framework, we define a task model by
characterizing its requirements on two resources: the processor and the memory
space. We consider that a task has a periodic real-time requirements on the
processor usage and has a memory space requirement for its code size. We define
a task model as Ti〈(Pi, Ci), Si〉 as follows:
– Period Pi: the fixed time interval between the arrival times of two consecutive

request of Ti. We assume each task has a relative deadline equal to its period.
– WCET (Worst-Case Execution Time) Ci: the time amount required to com-

plete Ti’s execution in the worst case.
– Code Size Si: the size of Ti’s executable code.

A Compositional Framework for Real-Time Embedded Systems 141

We assume that all tasks in a component are synchronous, i.e., they release
their initial jobs at the same time. We also assume that each task is independent
and preemptive.

We assume that each task has multiple versions of its executable code and
that each version yields different WCET and code size. To capture this, we define
a size/time tradeoff list Xi of task Ti as follows:

– Size/Time Tradeoff List Xi: the list that enumerates the possible pairs of
WCET Ci and code size Si of Ti, i.e.,

Xi = {xi,j = 〈Ci,j , Si,j〉|j = 1, 2, . . . , Ki} and 〈Ci, Si〉 ∈ Xi,

where xi,j denotes the j-th element of Xi, called a size/time tradeoff, Ci,j

and Si,j give the WCET and code size of the j-th version of Ti’s executable
code, and Ki denotes the number of elements of Xi.

We assume that each task’s size/time tradeoff list is derived by the selective
code transformation technique [11], which utilizes a dual instruction set proces-
sor. The greedy nature of this technique ensures that the size/time tradeoff list
Xi is constructed satisfying the following two properties:

– The code size Si,j increases while the WCET Ci,j decreases as the index j
increases. That is, ΔS

i,j = Si,j − Si,j−1 > 0 and ΔC
i,j = Ci,j − Ci,j−1 < 0,

∀i ∈ [1, n] and ∀j ∈ [2, Ki].
– The marginal gain in the WCET reduction for the unit increase in the code

size is monotonically non-increasing, i.e.,

∀i ∈ [1, n], ∀j ∈ [2, Ki − 1]
|ΔC

i,j+1|
ΔS

i,j+1
≤ |ΔC

i,j |
ΔS

i,j

.

Note that the minimum number of Xi’s elements is 2, because xi,1 corresponds
to the program compiled entirely into the reduced instruction set, while xi,Ki to
the program compiled entirely into the full instruction set.

As a scheduling algorithm, we assume that the workloads within a component
are scheduled under the EDF (Earliest Deadline First) scheduling policy, which
has been shown to be optimal in the context of dynamic priority scheduling [15].

For a periodic task set W under EDF scheduling, Baruah et al. [4] introduced
a processor demand bound function dbfCPU(W, EDF, t) that computes the total
processor demand of W for every interval length t:

dbfCPU(W, EDF, t) =
∑

Ti∈W

(⌊ t − Di

pi

⌋
+ 1

)
· ei. (2)

For a task set W under EDF scheduling, we simply define a memory demand
bound function dbfSZ(W, EDF, t) that computes the total memory demand of W
for every interval length t:

dbfSZ(W, EDF, t) =
∑

Ti∈W

Si. (3)

142 I. Shin and I. Lee

As a resource model, we consider two resource models: one is a periodic
resource model for a time-shared processor and the other is a non-time-shared
resource model for the memory space. In our earlier work [19], we introduced a
periodic resource model that can characterize time-shard resources with periodic
behavior. This periodic resource model is defined as Γ (Π, Θ), where Π is a period
(Π > 0) and Θ is a periodic allocation time (0 < Θ ≤ Π). A resource capacity
UΓ of a periodic resource Γ (Π, Θ) is Θ/Π . Let us define the supply function
supplyCPU(R, t, t+d) of a resource model R such that it calculates the processor
(resource) supply of R during a time interval [t, t + d). This periodic resource
model Γ (Π, Θ) can specify the resources that has the following property:

supplyCPU

(
Γ, kΠ, (k + 1)Π

)
= Θ, where k = 0, 1, 2,

For a periodic resource model Γ (Π, Θ), its supply bound function sbfΓ (t) is
defined to compute the minimum resource supply for every interval length t as
follows:

sbfCPU(Γ, t) =

⎧⎨
⎩

t − (k + 1)(Π − Θ) if t ∈ [(k + 1)Π − 2Θ,
(k + 1)Π − Θ],

(k − 1)Θ otherwise,
(4)

where k = max
(⌈(

t − (Π − Θ)
)
/Π

⌉
, 1

)
.

We define a non-time-shared memory resource model Ψ(Υ), where Υ repre-
sents the memory size that the memory model Ψ can provide. For this model
Ψ(Υ), its supply bound function sbfΨ (t) is simply defined as

sbfSZ(Ψ, t) = Υ.

We define an interface model as I〈(P , C), S〉, where P is a period, C is a
WCET, and S is a code size.

Definition 1. An interface I〈(P , C), S〉 is said to abstract the resource demands
of a component Q(W, R, A), denoted by I |= Q, if

∀t > 0 dbfCPU(W, EDF, t) ≤ sbfCPU(Γ (Π, Θ), t) ∧
dbfSZ(W, EDF, t) ≤ sbfSZ(Ψ(Υ), t),

where Π = P , Θ = C, and Υ = S.

We consider each task Ti has multiple candidates of a pair of WCET Ci

and code size Si, and we defined a size/time tradeoff list Xi = {〈Ci,j , Si,j〉}
to specify these multiple candidates. Like an individual task, an interface I can
have multiple candidates of a pair of WCET C and code size S as well. To capture
this, we define a size/time tradeoff list X of I such that X enumerates possible
pairs of C and S, i.e., .

X = {〈Cm, Sm〉|m = 1, 2, . . . ,K} and 〈C, S〉 ∈ X ,

A Compositional Framework for Real-Time Embedded Systems 143

execution time execution time

code size code size

task-level tradeoff component-level tradeoff

Fig. 1. Component abstract problem with size and time

where Cm and Sm give the m-th WCET and code size, and K denotes the number
of elements of X .

We classify the elements of X into three categories. An element 〈C, S〉 of X
is said to be dominated if

∃〈C′, S′〉 ∈ X C′ ≤ C and S′ ≤ S.

An element 〈Cm, Sm〉 of X is said to be convex, where 1 < m < K, if

∀i ∈ [1, m − 1] ∀j ∈ [m + 1, K]
|Cm − Ci|
Sm − Si

≤ |Cj − Cm|
Sj − Sm

.

The first element 〈C1, S1〉 and the last element 〈CK, SK〉 are convex if they are
not dominated, respectively. An element 〈Cm, Sm〉 of X is said to be inbetween
if it is neither dominated nor convex.

3 Extension to Component Abstraction on Code Size and
Timeliness

In this paper, we present an extension to our compositional framework for com-
ponents with size and time. With the system model and assumptions described
in the previous section, we first present the formal statement of our problem,
called the CAP-ST (component abstraction problem: size and time) problem.

Consider a component Q(W, R, A), where W = {Ti(〈Pi, Ci〉, Si)}, i = 1,
. . . , n, A = EDF. Basically, we consider the problem of abstracting the resource
information of Q with an interface I(〈P , C〉, S). We assume that each task Ti

has a size/time tradeoff list Xi = {〈Ci, Si〉} to represent its own size and time
tradeoff information. Here, we are particularly interested in abstracting the col-
lective task-level size and time tradeoff information as a component-level size

144 I. Shin and I. Lee

and time tradeoff information. That is, we want to compose multiple size/time
tradeoff lists Xi’s as a single size/time tradeoff list X = {〈C, S〉}, as illustrated
in Figure 1. For this abstraction problem, we assume that the period Pi of each
task Ti is given and the period P of an interface I is given. We define the CAP-
ST problem as follows: given Pi and Xi for each task Ti and P , the problem is
to construct X such that

∀Ti ∈ W ∀〈Ci, Si〉 ∈ Xi ∃〈C, S〉 ∈ X I(〈P , C〉, S) |= Q(W, R, A).

We now present an approach to the CAP-ST problem with the following
example. Consider a component Q(W, R, A), where W = {Ti | i = 1, 2} and
A = EDF. Let p1 = 50 and p2 = 70. Suppose the size/cycle tradeoff lists X1 and
X2 are given such that 〈ci, si〉 ∈ Xi, where i = 1, 2, as follows:

X1 = {〈3.47, 0.64〉, 〈3.04, 0.69〉, 〈2.80, 0.78〉, 〈2.69, 0.84〉},

X2 = {〈4.46, 1.55〉, 〈4.02, 1.64〉, 〈3.92, 1.71〉, 〈3.84, 1.80〉}.

Now, we can construct the size/time tradeoff list X = {〈C, S〉} of the example
component as follows:

– WCET C. We find the minimum possible value of C that, given P , satisfies

∀0 < t dbfCPU(W, EDF, t) ≤ sbfCPU(Γ (Π, Θ), t). (5)

where Π = P and Θ = C. Suppose each task Ti has a WCET ci determined
as one of the candidate values given by Xi. For example, let c1 = 3.47 and
c2 = 4.46. In this example, when P = 25, the minimum value of C to satisfy
Eq. (5) is 1.63.

– Code Size S. We simply determine S as follows:

S =
∑

τi∈W

si,

and this surely satisfies

dbfSZ(W, EDF, t) ≤ sbfSZ(Ψ(Υ), t),

where Υ = S. Suppose each task Ti ∈ W has a code size si determined as
one of the candidates given by Xi. For instance, s1 = 0.64 and s2 = 1.55.
Then, S = 2.19.

We now consider an issue of constructing the size/time tradeoff list X . When
each task has multiple elements of its size/time tradeoff list, a pair of 〈C, S〉 has
multiple candidate values. For the above example with P = 25, Figure 2 shows all
the possible elements of X under the labels of “convex”, “inbetween”, and “dom-
inated”. The labels indicate which categories elements belong to. The size/cycle
tradeoff list X can be refined such that dominated elements are excluded or X
contains only convex elements. The latter way ensures that X satisfies the fol-
lowing property: the marginal gain in the WCET reduction for the unit increase
in the code size is monotonically non-increasing, as each task-level size/cycle
tradeoff list Xi does.

A Compositional Framework for Real-Time Embedded Systems 145

2.1

2.2

2.3

2.4

2.5

2.6

2.7

1.2 1.3 1.4 1.5 1.6 1.7

WCET

C
O

D
E

 S
IZ

E

convex inbetween dominated

Fig. 2. The elements of the solution X

4 Related Work

4.1 Code Size Reduction Techniques

For many embedded systems, program code size is a critical design factor. We
present a brief overview of a compiler technique for code size reduction that
works for a processor capable of executing dual bit-width instructions. A very
good example of such a processor is ARM microprocessors with a 32-bit instruc-
tion set (IS) for normal modes and a 16-bit reduced bit-width IS for Thumb
modes [8]. A reduction in code size comes from encoding a subset of the 32-
bit normal mode IS into the 16-bit Thumb mode IS. At the execution time,
a decompression engine converts a Thumb-mode instruction into an equivalent
normal-mode instruction during the decode stage. The Thumb IS can access only
8 general purpose registers (out of 16 general purpose registers in the normal
mode) and can encode only a small immediate value. These limitations increase
the number of execution cycles and, thus, increases the program execution time.
For typical programs, by using this technique the code size can be reduced by
around 30%, while the number of execution cycles increases by about 40% [7].

The dual bit-width ISA allows a program to contain both 32-bit normal-mode
instructions and 16-bit reduced bit-width instructions where the mode change
between the two can be performed by executing a single mode-change instruc-
tion. This capability allows for a tradeoff between code size and the number of
execution cycles when compiling a program. For example, by progressively trans-
forming program units such as functions or basic blocks in the normal mode into
the equivalent ones in the reduced bit-width mode while adding patch-up code to
maintain the correct semantics, we can obtain a table that gives possible (code
size, the number of execution cycles) pairs. The order by which the transforma-

146 I. Shin and I. Lee

tion is performed considers both reduction in code size and increase in the the
number of execution cycles, i.e., it favors program units that give large reduction
in code size with only a small increase in the number of execution cycles. Our
earlier work [21] proposed a design framework that deals with a design problem
taking advantage of this code size vs. time tradeoff. In this paper, we introduce a
new abstraction technique that addresses the issues of composing the collective
task-level code size vs. time tradeoff information into a component-level code
size vs. time tradeoff information.

4.2 Component Techniques for Timing Aspect

Real-time systems are ones in which correctness depends not only on logical cor-
rectness but also on timeliness. In the real-time systems community, substantial
research efforts have concentrated on the schedulability analysis problem, which
determines whether timing requirements imposed on the system can be satisfied.
For example, extensive studies [15,12,3,2] have been conducted the schedulabil-
ity analysis for dedicated systems. In addition, the schedulability analysis on
hierarchical scheduling frameworks, where components (applications) can share
resources hierarchically under different scheduling, has been receiving a grow-
ing attention [5,10,13,6,17,18,14,19,1,20]. However, there is no widely accepted
technique that supports the compositionality of timing requirements, i.e., how
component-level timing requirements can be independently analyzed, abstracted,
and composed into the system-level timing requirements.

We have developed a compositional real-time scheduling framework [14,19]
for supporting the compositionality of timing requirements. Fundamental to such
a framework is the problem of computing the minimum resource requirements
necessary for guaranteeing the collective timing requirements of a component
or a component assembly. We have addressed this problem systematically, by
developing sufficient and necessary schedulability conditions for the two most
popular real-time scheduling algorithms: EDF (earliest deadline first) and RM
(rate-monotonic). We addressed this problem using a standard real-time require-
ment model, which is the Liu and Layland periodic model [15], and another
model, the bounded-delay resource partition model [16].

5 Conclusion

Our goal is to develop a framework for supporting the compositional modeling
and analysis of timing and resource consumption properties. In this paper, we
considered the problem of supporting the compositionality of timing and code
size properties. Particularly, we focused on the problem of composing the collec-
tive task-level code size vs. execution time tradeoff into a component-level code
size vs. execution time tradeoff.

Our future work includes extending our framework by considering other re-
sources, such as power. For example, the dynamic voltage scaling (DVS) tech-
nique which involves dynamically adjusting the supply voltage and the CPU

A Compositional Framework for Real-Time Embedded Systems 147

clock speed, has been widely accepted as a key technique to reduce the en-
ergy consumption for embedded systems. This DVS technique generates energy
consumption vs. execution time tradeoff. We plan to develop component tech-
niques that support the compositionality of this energy consumption vs. execu-
tion time tradeoff.

In this paper, we assume that each task is independent. However, tasks may
interact with each other through communication and synchronization. We also
consider extending our framework to deal with this issue.

References

1. L. Almeida and P. Pedreiras. Scheduling within temporal partitions: response-time
analysis and server design. In Proc. of the Fourth ACM International Conference
on Embedded Software, September 2004.

2. N. Audsley, A. Burns, and A. Wellings. Deadline monotonic scheduling theory and
application. Control Engineering Practice, 1(1):71–78, 1993.

3. S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks on one processor. Journal of
Real-Time Systems, 2:301–324, 1990.

4. S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic
tasks on one processor. In Proc. of IEEE Real-Time Systems Symposium, pages
182–190, December 1990.

5. Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environ-
ment. In Proc. of IEEE Real-Time Systems Symposium, pages 308–319, December
1997.

6. X. Feng and A. Mok. A model of hierarchical real-time virtual resources. In Proc.
of IEEE Real-Time Systems Symposium, pages 26–35, December 2002.

7. S. Furber. ARM System Architecture. Addison Wisley, New York, NY, 1996.
8. L. Goudge and S. Segars. Thumb: Reducing the cost of 32-bit RISC performance in

portable and consumer applications. In Proc. of the 1996 COMPCON, September
1996.

9. A. Halambi, A. Shrivastava, P. Biswas, N. Dutt, and A. Nicolau. An efficient com-
piler technique for code size reduction using reduced bit-width isas. In Proceedings
of Design Automation and Test in Europe (DATE ’02), 2002.

10. T.-W. Kuo and C.H. Li. A fixed-priority-driven open environment for real-time
applications. In Proc. of IEEE Real-Time Systems Symposium, pages 256–267,
December 1999.

11. S. Lee, J. Lee, C. Y. Park, and S. L. Min. A flexible tradeoff between code size
and WCET using a dual instruction set processor. In Proceedings of the 8th Inter-
national Workshop on Software and Compilers for Embedded Systems (SCOPES),
pages 244–258, Amsterdam, The Netherlands, September 2004.

12. J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In Proc. of IEEE Real-Time Systems
Symposium, pages 166–171, 1989.

13. G. Lipari and S. Baruah. A hierarchical extension to the constant bandwidth server
framework. In Proc. of IEEE Real-Time Technology and Applications Symposium,
pages 26–35, May 2001.

14. G. Lipari and E. Bini. Resource partitioning among real-time applications. In
Proc. of Euromicro Conference on Real-Time Systems, July 2003.

148 I. Shin and I. Lee

15. C.L. Liu and J.W. Layland. Scheduling algorithms for multi-programming in a
hard-real-time environment. Journal of the ACM, 20(1):46 – 61, 1973.

16. A. Mok, X. Feng, and D. Chen. Resource partition for real-time systems. In
Proc. of IEEE Real-Time Technology and Applications Symposium, pages 75–84,
May 2001.

17. J. Regehr and J. Stankovic. HLS: A framework for composing soft real-time sched-
ulers. In Proc. of IEEE Real-Time Systems Symposium, pages 3–14, December
2001.

18. S. Saewong, R. Rajkumar, J.P. Lehoczky, and M.H. Klein. Analysis of hierarchical
fixed-priority scheduling. In Proc. of Euromicro Conference on Real-Time Systems,
June 2002.

19. I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees.
In Proc. of IEEE Real-Time Systems Symposium, pages 2–13, December 2003.

20. I. Shin and I. Lee. Compositional real-time scheduling framework. In Proc. of
IEEE Real-Time Systems Symposium, December 2004.

21. I. Shin, I. Lee, and S. Min. Embedded system design framework for minimizing
code size and guaranteeing real-time requirements. In Proc. of IEEE Real-Time
Systems Symposium, pages 201–211, December 2002.

22. D. Sweetman. See MIPS Run. Morgan Kaufmann, San Francisco, CA, 1999.

On the Importance of Composability of Ad Hoc Mobile
Middleware and Trust Management

Ovidiu V. Drugan1, Ioanna Dionysiou2, David E. Bakken1,2, Thomas P. Plagemann1,
Carl H. Hauser2, and Deborah A. Frincke3

1 Department of Informatics, University of Oslo, Norway
{ovidiu, dbakken, plageman}@ifi.uio.no

2 School of Electrical Engineering and Computer Science, Washington State University,
Pullman, Washington, USA

{idionysi, bakken, hauser}@eecs.wsu.edu
3 CyberSecurity Group, Pacific Northwest National Laboratory, Richland, WA, USA

deborah.frincke@pnl.gov

Abstract. Distributed computing is widely expected to become ubiquitous over
the next decade. Distributed services such as those provided by Service Oriented
Architectures which will support this ubiquity must meet many requirements at
both runtime and over their lifecycle. Composability is one key requirement for
such services. In this paper we provide refined definitions of composability as it
applies to such distributed services, encompassing both hardware and software.
We then analyze these composability issues as they apply to two middleware
frameworks which support critical infrastructures. The first examines compos-
ability issues for resource management infrastructure for a framework that pro-
vides middleware services for ad hoc mobile networks designed to support emer-
gency rescue coordination. The second investigates composability issues involved
with trust management for status dissemination for the electric power grid.

1 Introduction

In the last ten to fifteen years distributed computing has become mainstream. It has
transitioned from something barely more than a laboratory curiosity to being relied
on in all facets of society. This transition has been driven by many factors, including
cheap computing hardware, the availability of broadband internet connections, and the
maturing of commercial middleware.

Over the next decade distributed computing is widely predicted to become ubiq-
uitous and the default mode of interaction for most application programs. These pre-
dictions are being driven by factors including the rapidly decreasing size and cost of
networked embedded computing hardware and the widespread availability of wireless
network connections. Distributed computing over the next decade will not only become
more widespread in homes, schools, shopping malls, and many public places, but also
in critical infrastructures. Many of these infrastructures such as the electric power grid
currently have very rudimentary communications and application-level services, but are
undergoing ambitious modernization efforts, a large part of which includes improving
their communications infrastructure, including middleware services.

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 149–163, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

150 O.V. Drugan et al.

Programming distributed applications is even harder than programming standalone
ones. Fundamental factors inherent in wide-area distributed computing cause this,
chiefly having to deal with the variability of network-level latencies and partial failures
of computing nodes and network links. At the application level, distributed applications
increasingly have complex quality of service (QoS) requirements with multiple QoS
dimensions such as latency, throughput, availability, confidentiality, and integrity [1].

Distributed applications have historically been expensive to develop and may be
deployed for many years. Thus, developers, system integrators, and maintainers of
such software have had additional higher-level requirements for their software sys-
tems. These include flexibility, adaptability, survivability, manageability, evolvability,
and composability. Composability in particular is a key requirement that has become
of great interest in recent years [2,3,4]. It involves reasoning about and providing end-
to-end interoperability and QoS across different entities, in ways we delineate in the
following section.

In this paper we investigate the space of serial composability for distributed applica-
tion programs. To help clarify this and make it more concrete, we illustrate these issues
in two very different contexts. The first is serial composability of resource manage-
ment for ad hoc mobile environments, driven by emergency response application needs.
The second context is composability of trust management, particularly serial trust com-
posability, in the context of supporting middleware services for critical infrastructures,
primarily the electric power grid.

2 Facets of Composability

There are many different ways in which composability is desired for distributed ap-
plication programs. In this section we provide expanded definitions of such kinds of
composability.

Hierarchical composability involves composing up from contained components. A
given component has a functional API, that deals with its business logic, as well as
(either explicitly or implicity) a QoS interface. Hierarchical composition of functional
APIs has been practiced for decades and is known as the “divide and conquer” tech-
nique. However, when a component uses other local components, the QoS provided
by these subcomponents should ideally be composed upward. That is, the QoS and re-
source usage of the subcomponents plus that of the component body’s code should be
composed into the QoS and resource usage for the higher level component. Such com-
posability is an area of active systems software research, and is currently beyond the
state of the art. It is sometimes called the “system of systems” problem.

Horizontal composability involves composition across peer entities which can be
composed in two primary ways: in parallel and in sequence. Parallel composability in-
volves supporting multiple entities competing for systems mechanisms and middleware
services without interfering with the delivery of the end-to-end QoS that each running
application client receives. Parallel composability issues and techniques are described
in [2]. Serial composability is the ability to provide end-to-end services with predictable
QoS for application clients that are composed of a chain of system mechanisms. Pro-
viding serial composability of the above entities is challenging and in the general case

On the Importance of Composability of Ad Hoc Mobile Middleware 151

beyond the state of the art. There are many open research issues involving the neces-
sary support infrastructure for this, including simulations and testbed experimentation
infrastructures that have necessary hooks to validate the composability of QoS.

Vertical composability involves composing composition of different abstraction lev-
els (i.e., not peers), often in a stack and in the same process. Examples of these levels,
from the bottom up, include:

– Baseline system mechanisms, which are low-level mechanisms that can be consid-
ered atomic for the purposes of composability analysis. Examples include process
creation, process scheduling, bandwidth reservation, and memory allocation.

– Compound system mechanisms, which are built on top of the baseline system mech-
anism. These include replication, checkpointing, and process migration.

– Middleware, on which application programs are built.
– Application programs, both clients and servers.

The middle two of these layer–compound system mechanisms and middleware–may
themselves involve multiple layers across which vertical composability must be pro-
vided. [5] describes how replication using the state machine approach depends on
lower-level compound system mechanisms including resilient processes, RPC, and mul-
ticast. [6] describes 4 layers of middleware; from the bottom upwards they are: host
infrastructure middleware, distribution middleware, common middleware services, and
domain-specific middleware.

Resource management can compose in all 3 ways described above, though typically
not all in a single resource management system. Vertical composition involves compos-
ing resource usage up a stack. For example, classical resource managers may allocate
low-level resources such as memory and CPU time, while a middleware manager will
create and manage distributed objects (or whatever abstraction the given middleware
provides) based on the lower-level resources provided by the baseline resource man-
ager. Serial composition of resources is important in the ad hoc mobile network domain,
as described in Section 3. Hierarchical resource management is very important for com-
plex wide area distributed application programs such as for the military. An example of
a hierarchical resource manager is Darwin [7].

3 Mobile Resource Management and Composability

3.1 Overview of the Ad Hoc InfoWare Project

Efficient collaboration between rescue personnel from various organizations is a mis-
sion critical key element for a successful operation in emergency and rescue situations.
There are two central preconditions for efficient collaboration, (1) the incentive to col-
laborate, which is naturally given for rescue personnel in many emergency response sit-
uations which may involve fire, police, and paramedics; and, if terrorists are involved,
collaboration may also involve military, disease control experts, and nuclear or chemi-
cal experts and (2) the ability to efficiently communicate and share information. Mobile
ad hoc networks (MANETs) have the potential to provide the technical platform for
efficient information sharing in such scenarios, assuming that all rescue personnel are

152 O.V. Drugan et al.

carrying and using mobile computing devices with wireless network interfaces. Appli-
cations are needed to turn a working infrastructure of a MANET into a useful system,
like dispatching of rescue personnel and equipment, context-aware medical diagnosis
and treatment support, and real-time evidence collection and management. Unfortu-
nately, the state of the art in such middleware for MANETs is very limited, with almost
no support for the necessary MANET-specific interaction styles and resource manage-
ment. As a result, application development for MANETs is particularly difficult.

MANETs are typically highly dynamic networks in terms of available communica-
tion partners, available network resources, connectivity, etc. Furthermore, the end-user
devices are very heterogeneous, ranging from high-end laptops to low-end PDAs and
mobile phones. CPU, storage space, bandwidth, and battery power represent important
resources. Finally, many application scenarios, like coordination of rescue teams, have
hard non-functional requirements such as availability, efficient resource utilization, se-
curity, and privacy. Both the heterogeneity of devices and the broad range of functional
and non-functional requirements make a composable solution preferable. Complex mid-
dleware services are decomposed in such a way that on resource weak devices only
some of the service components are deployed and on resource strong devices all service
components are deployed to meet the application requirements. Further, serial compos-
ability is an issue: these non-functional requirements must often be provided across
multiple infrastructures. Thus, sufficient quality in information access and sharing in
such an environment faces many obstacles. Obviously, solving these issues in every
new MANET application from scratch is not practical, nor would it be desirable even
if it were practical. Rather, a set of composable middleware services that support the
development of applications for MANETs is needed.

Our goal in the Ad Hoc InfoWare project is to develop composable middleware
services for information sharing in MANETS, with a key driving example being emer-
gency and rescue operations. We assume that wireless computing devices will be used
as the basic technical means for information sharing between rescue personnel such as
policemen, firemen, physicians, and paramedics.

These MANETs at emergency sites have the typical MANET complications such
as heterogeneous nodes, unpredictable reachability of nodes, etc. However, in many
cases MANETs at emergency sites will not be entirely infrastructureless, because some
devices might serve as gateways to the Internet. Middleware services for MANETs must
thus provide serial composability of QoS and resource management policies that span
this wired-wireless environment.

We address these challenges and requirements in the Ad-Hoc InfoWare project
by developing a set of configurable middleware components for MANETs that pro-
vide their services to applications and to other middleware components. Figure 1 il-
lustrates our architecture, comprising five major components: knowledge management,
distributed event notification, watch dogs, resource management, and security and pri-
vacy management. The knowledge management component supports sharing of infor-
mation by accommodating the heterogeneity of organizations involved. It presents the
information in a way that human and non-human users of all organizations can under-
stand. This implies supporting functionality akin to high-level distributed database sys-
tem functionality, querying available information and keeping track of what information

On the Importance of Composability of Ad Hoc Mobile Middleware 153

is available in the network. The likelihood of connection loss, at best sporadically and
sometimes quite regularly, implies also that middleware services based on synchronous
communication are not a good choice, because they are too vulnerable with respect to
communication disruptions. The alternative to synchronous interactions is a distributed
event notification system (DENS). Events are detected by watchdogs on the devices and
the DENS delivers notifications as reliably as possible to their destinations. Devices will
inevitably lose contact with other mobile devices due to network partitioning or power
drain, but groups that are portioned off from other parts of the MANET must still func-
tion as well as possible. Therefore, replication is necessary to achieve the required level
of availability. This includes replication of data as well as replication of middleware
services, e.g., DENS functionality and state. In order to make replication decisions that
increase the availability and result in efficient resource utilization, it is important to keep
track of resources. This resource management (RM) must track resources across differ-
ent wired and wireless infrastructures and must support policies that compose serially
across infrastructures to provide end-to-end QoS for the wide range of applications,
users, and corresponding usage patterns.

Knowledge
Management

Distributed Event
Notification System

Wathcdogs
Resource

Management

Security and Privacy Management

Distributed Event
Notification System

Delivery

Subscriber - DENS

DENS - DENS

Publisher - DENS

State
Management

Storage
Management

Availability &
Scaling

Resource Manager

Resource Monitor

Local Monitor

Adjacency Monitor

Resource Availability

Replication
Manager

Proposal
Unit

Watchdogs

Watchdog
Manager

Watchdog
Execution

Environment

Fig. 1. Ad-Hoc InfoWare middleware components

Performance and efficient resource utilization are also important, but there is typi-
cally a trade-off between these two requirements and availability. There is no general
solution for this trade-off and its resolution often depends on the particular application
and even the particular emergency situation. It is thus necessary to allow the applica-
tion (or system integrator or system administrator) to define policies on how to han-
dle these tradeoffs. Hardware heterogeneity requires also that middleware services are
configurable, such that small resource-weak devices run only a few middleware com-
ponents and devices with sufficient resources run many (or all) components. This is
a different kind of serial composability, of services across a span of device capabil-
ity. Careful management of this can prolong the lifetime of the resource-weak devices
and thereby provide broader coverage of the service for users of the application. The
security and privacy management component is concerned with controlling access to
shared information.

154 O.V. Drugan et al.

3.2 Resource Management

The Ad Hoc InfoWare middleware is designed as a set of configurable components
to address the wide range of devices. Configuration of components is achieved by de-
composing each component into a set of sub-components. Each component can de-
ploy only a part of its sub-components or all. By this it can adapt to the available re-
sources. Obviously, a minimal configuration, i.e., deploying only one sub-component,
can only provide the basic functionality. Richer configurations that include additional
sub-components can provide more functionality but requires more resources.

We illustrate the possible configuration for the Ad Hoc InfoWare middleware by
describing the DENS and RM. DENS two main tasks are delivery of notification and
state management. Delivery is built on three delivery components to exchange informa-
tion on subscriptions and notifications between the specialized three pairs of entities:
subscriber - DENS, DENS - DENS, and DENS - publisher. A minimal configuration
contains only one of the delivery components, which is needed by any node that wants
to use and or provide DENS related services. A richer configuration for DENS also
involves the three management components, i.e., state management, storage manage-
ment, and availability and scaling management [8]. These management components
allow storing subscriptions and notifications that could not be delivered due to net-
work partitions, and handling inconsistencies between states of different DENS nodes.
RM main tasks are resource monitoring and resource information management. Re-
source monitoring is built on three components for monitoring local resources, remote
resources and dissemination of resource information. A richer RM configuration could
consist additionally of a replication manager and a component for reasoning about use
of resources. The latter helps the former by recommending whether to use or to free
resources, respectively, e.g., where to replicate data, or which resource to use on other
nodes. The task of the proposal unit is to recommend to the replication manager when
to replicate data and to which node. This implies also that the proposal unit recom-
mends when to use which resources and when to free them. These management com-
ponents allow applications to use remote resources and increase availability of data in
the network.

In order to provide a complete and correct set of middleware services it is necessary
that each network, including every partition of the network, hosts a complete version
of each of the middleware services. The role of RM in such an environment is to know
what services a node is running and what services are missing. It needs to find ways to
balance the lack of resources on nodes, by composing the service instances running on a
set of nodes. One important factor in composing the service is the amount of resources:
on the local node, on another node, and on a set of nodes.

We illustrate this with four examples where service composability gives the possi-
bility to middleware and applications to react correctly to changes in the environment
and by this to provide better services to the user.

– Composing resources for DENS - Ad Hoc InfoWare middleware
In case of a network partition a middleware service, such as DENS, might not have
any instance. In this case, it is the task of RM to discover one or more nodes able to
run the missing sub-services of DENS. If the service is missing completely it can
instantiate the entire DENS service.

On the Importance of Composability of Ad Hoc Mobile Middleware 155

– A smart resource usage by using knowledge - Ad Hoc InfoWare middleware
Recommending use of a resource from another node raises trust and reliability
problems. To avoid such problems RM can request from the KM high level infor-
mation about a node’s grouping information, for example the owner organization.
It selects for recommendation the node with the highest degree of trust.

– Using video automatic analysis for evidence collection - application
We envision an application for online automatic annotation and analysis of video
recordings. Such an application could be composed from the following three ser-
vices: video recording, online video analysis and online video annotation. Each of
these services can be offered by a different node. If the capture node is not able
to perform all tasks, they might be distributed to other nodes. This can happen for
various reasons, for example the service is not present locally or the it doesn’t have
enough computation power. In this case, the application can request to RM to find
the nodes where these services can be performed.

– Advanced video streaming and transcoding - application
Another possible application is video streaming and transcoding for clients with
different capabilities. For such an application the following components can be en-
visioned: high resolution video recording, transcoding service, storage service and
streaming service. If the video capture node is unable to perform a video transcod-
ing and streaming, the application can request the RM to find the nodes where these
services can be performed.

In these examples, although the source of the request is different, the goal of the
service is the same: to find the resource that suits best its requirements, which is the task
of RM. A way of achieving this is to monitor and predict data and resource availability.

To predict availability of resources the RM first predicts the future connectivity to
the nodes. The second step is to disseminate the resource availability information in the
network. To determine the connectivity to nodes it is useful to estimate their current
and future position. A way to perform this is to determine the mobility patterns for
each node and group of nodes, which means determining the pattern of movement in a
scene for a node. One constraint of our application domain is that it is not possible to
have exact location information on all nodes all the time, because GPS devices will not
always work (e.g. in tunnels or buildings). Due to this, it can rely only on other types of
information, for example routing tables from the routing protocol, wireless bandwidth
characteristics, statistics of adjacency of nodes or group membership descriptions.

Currently, we are working on analyzing data obtained from the Ad hoc On-Demand
Distance Vector (AODV) Routing protocol [9] for prediction of future connectivity of
nodes. Each node keeps track of its neighbors, but since AODV is a reactive routing pro-
tocol, only as long as it is involved in communications, i.e., transmitting and receiving
data, or transmitting routing messages. We use this information to build neighbors’ his-
tories, which we later use to estimate the future connectivity between two neighboring
nodes. This method has the advantage that it can be used for any other routing protocol.
Another advantage is that it doesn’t create extra load on the system, since it does not
send any messages but only monitors the routing tables for changes. Our preliminary
experiments have shown that we can predict connectivity of nodes up to 170 seconds
in the future. We also can use application level information like maps and location ser-
vices if present and reachable in the network. The second step when predicting data and

156 O.V. Drugan et al.

resource availability is to disseminate and search available resources and data. In order
to disseminate information on availability of resource and data, we currently investigate
the use of DENS and the direct collaboration between RM instances on different nodes.

3.3 Related Work to Resource Management for Middleware for MANETs

Most of the existing work on resource management in ad hoc networks is oriented
toward studies of QoS (Quality of Service) [10,11,12], bandwidth management [13]
and mobility management [14].

Some of the existing work proposes the use of nodes’ mobility information to im-
prove information accessibility in MANETs. For example, Chang et al [15] propose a
framework for a distributed data accessibility service to access multimedia data within
a heterogeneous cooperative group. It is assisted by a predictive location-based routing
protocol which tries to maintain a specific set of QoS parameters. For this, they assume
that moving nodes remain in the same groups and follow predictable movement pat-
terns. Each node constructs the movement patterns of its neighboring nodes. For this, it
relies on information like the geographic location of nodes, movement direction and ve-
locity, transmission range of the node and on the received periodic position broadcasted
from the nodes. Using movement patterns, each node participating in a transmission
is capable of predicting the future location of the intermediate nodes and destination.
Under similar assumptions NonStop [16] constructs the movement patterns for a set
of mobile nodes which exhibit similar mobility patterns in their movements. They are
used to guarantee the continuous availability of multimedia streaming. NonStop esti-
mates the occurrence of network partitioning to replicate data to a streaming server that
has a low probability of being disconnected from a requesting client during a stream-
ing session. For optimization, MARE [17] tries to reduce bandwidth requirements by
moving operations, rather than transmitting data across a network. Information on avail-
able resources (services) is shared by periodically announcing availability of resources
(services) through distributed tuple spaces. Allia [18] uses peer-to-peer caching and
policy-driven agents to facilitate cross-platform service discovery.

4 Trust Management and Composability

4.1 Trust in Distributed Systems

Trust is an abstraction of individual beliefs and requirements that an entity has for spe-
cific situations and interactions. Creating a universally acceptable set of rules and mech-
anisms for specifying and reasoning about trust is a difficult process because of the
variety in trust definitions. Researchers have defined trust concepts for many perspec-
tives, with the result that trust definitions overlap or contradict each other [19]. There
are numerous models of trust, although no rigorous classification of either trust or its
models has been developed yet. Nevertheless, there is a subtle feature that differentiates
a generic trust model [20,21,22,23] from a trust management system [24,25,26]; the for-
mer focuses on representing specific aspects of trust, such as authentication, reputation,
and cooperation, whereas the second focuses on dynamically managing the lifespan of
trust relationships.

On the Importance of Composability of Ad Hoc Mobile Middleware 157

Regardless of model or management system, there are a number of open problems
dealing with the general concept of trust [19]. In this section we focus on a specific prop-
erty of trust, essential in collaborative environments: serial composability of a chain of
trust relationships. By definition, trust is not automatically transitive, yet effective mod-
els for composing trust are required in a number of cases. For instance, in some situ-
ations, the determination of trust is based on reputation while for other configurations
trust evaluation must rely on cooperation bonds. The goal is to devise a systematic way
for synthesizing the various trust models in a situation-aware framework. In addition
to the general case, serial trust composition is required whenever a number of entities
collaborate in executing a specific task.

4.2 Serial Trust Composability

In this case study, we restrict the scope of serial trust composability to an information
sharing system that delivers information from a source to the intended recipients. Trust
composability is illustrated in the next example. In any trust relationship, there is a
trustor and a trustee. A trustor is the entity that places its trust in another entity to
act as expected, within a particular context. This second entity is the trustee. A trust
relationship is one-to-many when a group of trustees are trusted similarly within the
same context. Current trust relationships are pairwise and support trust towards a non-
interacting group of trustees. In Figure 2(a), A trusts B, C, and D to consume data d in
a one-to-many relationship. Recognition of one group member as untrustworthy would
not affect the trust placed in the remainder of the group, provided that the untrustworthy
member is expelled.

(a) One-to-Many relationship for
 non-interacting group of trustees

(b) One-to-Many relationship for
 interacting group of trustees

Group of Peers

B

C DA
d

d

d

Fig. 2. Pairwise and Composite Trust Views

A pairwise approach cannot encompass the complexity of trust in collaborations
that go beyond two. Consider the WAN in Figure 2(b). A trusts D, that resides on a dif-
ferent LAN, to consume its data. Intermediate entities B and C forward this data to D, so
some form of trust also exists between entity A and the forwarding servers. Malicious
intermediary servers would affect the trustworthiness of data received by D. Untrust-
worthy servers cannot simply be expelled from the trust group but in many situations
they must be replaced by trustworthy ones. Here, a trustor places its trust in interacting
trustees that collaboratively execute a task rather than one alone. Such composite views
of trust are implemented by systematic assessment of data trustworthiness when data is
handled by a chain of different trustees.

158 O.V. Drugan et al.

In general, trust evaluation must integrate diverse inputs such as cooperation, com-
petition, experience, recommendation, intrusion detection and assurance. Trust compo-
sition is a form of integration and it is aimed at reasoning about two risks: an informa-
tion producer risks leakage or misuse of its information and an information consumer
risks receiving inaccurate or malicious information for use. Composing trust in an in-
formation sharing system is founded on three concepts: trust expectations, information
lifecycle decomposition, and information trustworthiness within its lifecycle. The me-
thodical management of these concepts let us built individual pairwise trust relation-
ships at different times during the information flow and examine a broader view of trust
placed on the specific information stream.

Starting with the trust expectations concept, an entity forms expectations as a way to
express concretely its interpretation of trust. Behavioral, security, and QoS requirements
are included in a trustor’s expectations. Expectations pertain to a specific trustor, in a
given context, and this permits setting expectations based on individual perspective.
An expectation includes all behavioral (competence and motivation), security, and QoS
requirements derived from a trustor’s goals, standards, principles, and morals.

The second concept deals with the information lifecycle. Information lifecycle is de-
fined as the interval during which information is created and consumed. This interval is
decomposed into three stages: generation, dissemination, and consumption. The entities
responsible for the information at each stage are the information producer (generation
stage), information dissemination medium (dissemination stage), and finally, informa-
tion consumer (consumption stage). After decomposition, trust can be examined and
evaluated at this finer granularity for each stage in the information lifecycle. Pairwise
trust is the subjective and dynamic belief placed by an entity (trustor) on another entity
(trustee) to act as expected during an information lifecycle stage.

There are two specialized forms of pairwise trust: Information Provider Trust (IPT)
and Information Consumer Trust (ICT). IPT refers to the subjective and dynamic belief
placed by an information consumer (trustor) on an information producer (trustee) to
provide information as expected. Similarly, ICT refers to the subjective and dynamic
belief placed by an information provider (trustor) on an information consumer (trustee)
to consume information as expected.

P C

trustor trustee

trustortrustee

I

trustee

trustee

ICT(Producer,Consumer)
ICT(Producer,Dissemination Medium)

IPT(Consumer,Producer)
IPT(Consumer,Dissemination Medium)

Fig. 3. Pairwise Trust Relationships within Information Lifecycle

Finally, the third concept is that of information trustworthiness. Information trust-
worthiness during a particular lifecycle stage depends on the trustworthiness of the
entity that handles the information during that stage. As a result, information trustwor-
thiness is related to the trustworthiness of all entities that handle it, not just the creator

On the Importance of Composability of Ad Hoc Mobile Middleware 159

or consumer of the data. Based on this principle, a composite view of trust is defined.
Composite view of trust is the composition of subjective and dynamic beliefs placed
by an actor (trustor) in other actors (trustees) to act as expected during the information
lifecycle. In other words, composing trust is the synthesis of pairwise trust relationships.

Figure 3 illustrates the four basic pairwise trust relationships in a generic informa-
tion sharing system, which is viewed from the perspective of its three required entities:
a producer, an information dissemination medium, and a consumer. Synthesizing the
pairs of pairwise relationships gives a composite view of trust, which is essential in
managing the risk of information leakage and use of malicious information.

Composing trust becomes more complicated when the dissemination medium con-
sists of a network of interconnected servers. Consider a publish-subscribe system, with
publishers, subscribers, and event servers as the main entities. Among these entities
there are three information flow lifecycles: publication advertisement from the pub-
lisher to the event servers, subscription request initiated by the subscriber and received
by the event servers, and message forwarding from the publisher to the subscriber.

We focus on the message forwarding information flow lifecycle that has trust re-
quirements as follows:

1. The publisher must be able to infer that the subscribers will not leak confidential
information.

2. The publisher must be able to rely on the event servers regarding message forward-
ing.

3. The subscriber must be able to infer that publishers publish trustworthy data.
4. The subscriber must be able to rely on the event servers regarding message delivery.
5. Each event server must be able to rely on other trustworthy servers that it receives

messages from or forwards messages to.

Figure 4 illustrates the pairwise trust relationships that satisfy the requirements men-
tioned above. It is important to note that each event server acts as both a producer and
a consumer of information by forwarding to and receiving messages from its adjacent
servers. Publishers and subscribers need the tools to synthesize the individual trust re-
lationships for the servers involved in the forwarding operation so as to derive the trust-
worthiness of the information dissemination medium as a single entity. For example,
ICT(Producer,Dissemination Medium) translates into the composition of the trustwor-
thiness of the chain of the servers on the information delivery path.

4.3 Trust and the Electric Power Grid

An electric power grid consists not only of a network of generators, transmission lines,
and distribution infrastructure to customer premises but is overlaid with a communi-
cations and control system which enables the economical and stable operation of the
grid. The communications infrastructure for the electricity grids in Europe and the US
are based on conceptual designs from the 1960s and have evolved very little since. In
recent decades forces including industry restructuring, a lack of investment in transmis-
sion capacity, and almost no investment in research and development have converged
to stress the grid and to highlight the inadequacy of its communications infrastruc-
ture [27]. This rudimentary infrastructure must match supply and demand and control

160 O.V. Drugan et al.

P CS S

Publisher

 ICT(Publisher,Subscriber)
 ICT(Publisher,Event Service)

 Subscriber

 IPT(Subscriber,Publisher)
 IPT(Subscriber,Event Service)

Event Server n

IPT(EventServern,EventServern-1)

 IPT(EventServern,Connectionn and n-1)

ICT(EventServern,EventServern+1)

 ICT(EventServern,Connectionn and n+1)

Event Service

S

Fig. 4. Pairwise Trust Relationships in Publish-Subscribe Systems

grid-wide dynamics in real time with control mechanisms and sensors that are largely
local in scope, and its limitations have been a factor in every recent major blackout. Its
shortcomings also limit the deployment of better control and protection schemes [28].

We have been developing the GridStat framework (www.gridstat.net) to provide
better communications services for the electric power grid. GridStat specializes the
publish-subscribe paradigm for the semantics of status dissemination, and features QoS
management. GridStat is involved in collaborations with a local electric utility and a
national energy laboratory in the US. Through projects such as GridStat, the power
grid’s existing communication infrastructure is thus in the initial stages of being trans-
formed into one with distributed services that must support composability in the ways
described in Section 2. However, operating in a collaborative yet competitive environ-
ment gives rise to new challenges, especially in the realm of trust management, involv-
ing proper and legal disclosure of data between grid participants. Universally accessible
information may result in compromising consumer privacy or extracting consumption
production patterns, or even aiding in launching malicious cyber or physical attacks.
Information passed by a competitor or the ability to delay a competitor’s information
may also provide significant and unfair competitive advantage. Uncontrolled data ac-
cessibility affects the stability of the grid from operational and financial perspectives.

Consider a simple early warning system that spans a number of regional districts.
One of the important requirements for maintaining grid reliability and stability is to
respond in a timely manner to various problems, including security attacks and opera-
tional failures. If a warning system were in place, cooperating power companies would
have disclosed leading indicators of problems (virus information, status data involving
local instabilities and perturbances not visible outside a given power company, etc.) to
prevent further escalation of the failure with catastrophic consequences (e.g. bringing
down the power grid, or part of it). One major practical difficulty in deploying such a
system lies on the fact that power utilities are reluctant to share information that might
jeopardize their business, either legally or financially. The source of their hesitation is
their inability to quantify the risk of business discontinuity. Hence, in order to protect
themselves financially and legally, utilities choose not to share information.

On the Importance of Composability of Ad Hoc Mobile Middleware 161

However, a utility’s ‘no share’ policy can be relaxed in many cases if a trust man-
agement system provides automated predictions about the risk factors regarding inter-
actions with other grid participants. For example, the disclosure of an indicator that is
not market sensitive, under normal conditions, pertains no significant risk for the utility.
Utilities do not trust each other, but, with adequate trust management support, sharing
does not have to be a binary decision. Even though utilities need to restrict who has
access to its published data, selective data sharing is still a possibility. The real chal-
lenge is to understand what trust means at a particular situation. Deciding what to share
and with whom is a function of the trustworthiness of a utility at the other end of the
interaction. Risk management is a vital element of decision making, as there is a cost
for trusting but at the same time there is a cost for not trusting.

5 Discussion

Composability is a key property that has many facets. In this paper we provided a re-
fined definition of composability that includes vertical composability across layers of
mechanisms and services and horizontal composability between peers entities in these
layers. We then examined composability issues and mechanisms in two different mid-
dleware frameworks for critical infrustructure services.

The examples presented in Section 3.2 for composable middleware services and ap-
plication services illustrate the need for reconfigurable services to determine proposed
composition and configurations. In the first two examples the different components of
the Ad Hoc InfoWare middleware need to compose their functionalities in order to
perform. The first one indicates how to create the complete DENS configuration in a
resource poor network, and the second one shows how resource management improves
when it can use high level information from KM. The third and fourth examples indicate
how service and resource composition can help applications.

The examples involving trust management issues in the electric power grid pre-
sented in Section 4.3 involve composability in very different ways. The existence of
multiple entities, with possibly diverse trust policies and mechanisms, makes trust com-
position for information flows that span these domains more complicated and less
tractable. One of the lessons learned from decades of research in security is that the
problem of how to compose two or more secure components into a secure system is
hard and still remains an open problem. Trust composability requires synthesis of trust
relationships. Unlike secure components, trust relationships’ semantics are simpler and
it is our opinion that it is feasible to compose chains of realistic relationships, given that
these relationships are formally defined. While this is still open research, we believe
that heuristic approximations and policy language support provide relaxations for many
practical cases.

The composability techniques, issues, and tradeoffs presented in these two examples
apply at least in part to other contexts. Most research projects and commercial products
in the area of resource management are tailored for local area networks or at most a cor-
porate enterprise scope, and thus do not have to deal with the severe availability issues
that resource management for ad hoc mobile networks necessarily entails. However, as
they become deployed in wide area networks—with their higher variations in both re-

162 O.V. Drugan et al.

source availability and the usage patterns, QoS requirements, and the sheer number of
ubiquitous client applications—then the issues such resource management frameworks
face become similar to issues faced by ad hoc mobile networks. The trust management
issues and techniques described in this paper generalize beyond the electric power grid.
Many environments where there are economic markets involved and real-time status
being monitored will require such composability, including non-electric energy mar-
kets. However, we believe that many other kinds of distributed applications over the
next decade will require serial composability of trust relationships, and corresponding
trust infrastructures to provide them. Examples of such applications include so-called
“virtual corporations” lashed together for a short or medium period of time to cooperate
on a product or contract, or emergency response.

Acknowledgments

This research was funded in part by Norwegian Research Council in the IKT-2010
Program, Project Nr. 152929/431, and by Grant CCR-0326006 from the US National
Science Foundation. We thank the members of the Ad Hoc InfoWare project team. We
also thank Erek Göktürk and Ryan Johnston for their valuable feedback on this paper.

References

1. Zinky, J.A., Bakken, D.E., Schantz, R.E.: Architectural support for quality of service for
CORBA objects. Theory and Practice of Object Systems 3 (1997) 55–73

2. Venkatasubramanian, N.: Safe composability of middleware services. Communications of
the ACM 45 (2002) 49–52

3. Werner, M., Richling, J., Milanovic, N., Stantchev, V.: Composability concept for dependable
embedded systems. In: Proceedings of the International Workshop on Dependable Embedded
Systems at the 22nd Symposium on Reliable Distributed Systems (SRDS 2003), Florence,
Italy (2003)

4. Milanovic, N., Malek, M.: Architectural support for automatic service composability. unpub-
lished manuscript, available at http://www.informatik.hu-berlin.de/ milanovi/scc2005.pdf
(2005)

5. Mishra, S., Schlichting, R.: Abstractions for constructing dependable distributed systems.
Technical Report TR 92 -12, University of Arizona (1992)

6. Schantz, R., Schmidt, D.: Middleware for Distributed Systems - Evolving the Common
Structure for Network-centric Applications. In: The Encyclopedia of Software Engineering.
John Wiley and Sons (2001) 801 – 813

7. Chandra, P., Chu, Y.H., Fisher, A., Gao, J., Kosak, C., Ng, T.E., Steenkiste, P., Takahashi, E.,
Zhang, H.: Darwin: Customizable resource management for value-added network services.
IEEE Network 15 (2001) 22–35

8. Skjelsvik, K.S., Goebel, V., Plagemann, T.: A highly available distributed event notification
service for mobile ad-hoc networks. In: ACM/IFIP/USENIX 5th International Middleware
Conference (Middleware 2004), Toronto, Canada (2004)

9. Perkins, C., Belding-Royer, E., Das, S.: RFC 3561: Ad hoc on-demand distance vector (aodv)
routing (2003)

10. Phanse, K.S., DaSilva, L.A., Midkiff, S.F.: Design and demonstration of policy-based man-
agement in a multi-hop ad hoc network. Ad Hoc Networks, Elsevier Science (2003)

On the Importance of Composability of Ad Hoc Mobile Middleware 163

11. Cardei, I., Varadarajan, S., Pavan, A., Graba, L., Cardei, M., Min, M.: Resource management
for ad-hoc wireless networks with cluster organization. Journal of Cluster Computing in the
Internet, Kluwer Academic Publishers 7 (2004) 91–103

12. Lee, S.B., Ahn, G.S., Zhang, X., , Campbell, A.T.: INSIGNIA: An ip-based quality of service
framework for mobile ad hoc networks. Journal of Parallel and Distributed Computing,
Special issue on wireless and mobile computing and communications 60 (2000) 374–406

13. Ahn, K.M., Kim, S.: Optimal bandwidth allocation for bandwidth adaptation in wireless mul-
timedia networks. Computers and Operations Research, Elsevier Science 30 (2003) 1917–
1929 ad hoc, wireless networks hotspots, mutimedia.

14. Pei, G., Gerla, M.: Mobility management for hierarchical wireless networks. Mobile Net-
works and Applications archive, Kluwer Academic Publishers 6 (2001) 331–337

15. Chen, K., Shah, S.H., Nahrstedt, K.: Cross-layer design for data accessibility in mobile ad
hoc networks. Special Issue on Multimedia Network Protocols and Enabling Radio Tech-
nologies, Kluwer Academic Publishers 21 (2002) 49–75

16. Li, B., Wang, K.H.: NonStop: Continuous multimedia streaming in wireless ad hoc networks
with node mobility. IEEE Journal on Selected Areas in Communications 21 (2003) 1627–
1641

17. Storey, M., Blair, G., Friday, A.: MARE: resource discovery and configuration in ad hoc
networks. Mobile Networks and Applications 7 (2002) 377–387

18. Ratsimor, O., Chakraborty, D., Joshi, A., Finin, T.: Allia: Alliance-based service discovery
for ad-hoc environments. In: Proceedings of the 2nd international Workshop on Mobile
Commerce (WMC 2002), Atlanta, Georgia, USA (2002)

19. University of Southampton and QinetiQ: Trust Issues in Pervasive Environments. (2003)
20. Zimmermann, P.R.: The official PGP User’s Guide. MIT Press (1995)
21. Marsh, S.: Formalizing Trust as a Computational Concept. Department of Computer Science,

University of Sterling. (1994)
22. Josang, A.: Prospectives of modeling trust in information security. In: Proceedings of the

2nd Australasian Conference on Information Security and Privacy, Sydney, Australia (1997)
23. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: Proceedings

of the 33th Hawaii International Conference on System Sciences (HICSS), Maui, Hawaii
(2000) 1769–1777

24. Blaze, M., Feigenbaum, J., Keromytis, A.D.: Keynote: Trust management for public key
infrastructures. In: Proceedings of the 6th International Workshop on Security Protocols,
Cambridge, UK (1998)

25. Sun Microsystems: Poblano: A Distributed Trust Model for Peer-to-Peer Networks. (2000)
26. Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE Communications

Surveys and Tutorials 4 (2000)
27. Hauser, C.H., Bakken, D.E., Bose, A.: A failure to communicate: Next-generation communi-

cation requirements, technologies, and architecture for the electric power grid. IEEE Power
and Energy 3 (2005) 47–55

28. Tomsovic, K., Bakken, D.E., Venkatasubramanian, M., Bose, A.: Designing the next gener-
ation of real-time control, communication and computations for large power systems. Pro-
ceedings of the IEEE (Special Issue on Energy Infrastructure Systems) 93 (2005) 965–979

Proof-Based System Engineering Using a Virtual
System Model

Martin Biely1, Gérard Le Lann2, and Ulrich Schmid1

1 Technische Universität Wien, Embedded Computing Systems Group E182/2
Treitlstraße 3, A-1040 Vienna, Austria

{biely,s}@ecs.tuwien.ac.at
2 INRIA Rocquencourt, Project Novaltis

Domaine de Voluceau BP 105, F-78153 Le Chesnay Cedex, France
Gerard.Le Lann@inria.fr

Abstract. This paper provides an overview of Proof-Based System En-
gineering (PBSE), which aims at improving the current practice of de-
veloping computer-based systems. PBSE is of particular relevance for
safety critical applications and other systems where dependability prop-
erties are essential. This is particularly the case for applications in the
aerospace domain targeted in the EC FP6 Integrated Project ASSERT.
Applying PBSE both permits to eliminate most common design faults
before embarking on the development of a system and maximizes reuse,
which leads to significant savings in time and budgets. Particular empha-
sis is put on the requirements capture phase of PBSE, where a virtual
system model is used as a novel means to structure the information to
be captured.

1 Introduction

Stringent requirements for high availability, high reliability and safety in mission-
or/and life-critical applications entail specific and complex constraints on the de-
sign, verification and validation of computer-based systems (CBS). The challenges
thus involved are addressed by the Proof-Based System Engineering (PBSE)
method, which builds upon INRIA’s TRDF method (“Traitement Distribué”,
“Temps Réel”, “Tolérance aux Fautes”), a generic method that has already been
applied successfully in a number of former projects [1,2]. PBSE is currently ap-
plied in the FP6 Integrated Project ASSERT.1

Unlike most software engineering approaches, PBSE targets the entire CBS of
an application, not just the software part of its constituents’ embedded systems.
Examples are the worldwide distributed CBS for a bank or— in the case of
ASSERT — the CBS that spans spacecraft, the International Space Station, and

1 ASSERT (IST-004033) is an IST-FP6 Integrated Project sponsored by the European
Commission under the strategic objective of “Embedded Systems”. Coordinated by
the European Space Agency (ESA), the consortium consists of 29 partners from both
academia and industry. Consult www.assert-online.org for further details.

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 164–179, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

PBSE Using a Virtual System Model 165

ground stations. Traditional formal/informal software engineering methods are
primarily concerned with how to build the specification right , i.e., how to correctly
implement some given specification. PBSE is orthogonal to these methods as it
addresses the issues involved with how to build the right specification, which
consists of:

– building an adequate specification of the problem(s) to be solved , by man-
dating a dedicated requirements capture phase prior to any system design,
validation and implementation work,

– building a correct specification of the solution(s), with a priori and maximum
reusability of efforts, by mandating “forward” proofs in every step of the
solution design, rather than “backwards” verification and testing.

PBSE focuses entirely on the CBS-centric non-functional requirements “hid-
den” in an application, however. It thus actually allows to separate functional
requirements (application semantics) from non-functional requirements [3]: Ap-
plication programmers, who may use standard formal/informal software engi-
neering methods2, can safely ignore non-functional aspects during functional
analysis and design. PBSE experts, on the other hand, can abstract away func-
tional requirements in the course of their work, which rests upon splitting the
non-functional requirements into a set of models that specifies assumptions about
the CBS’s environment, and a set of properties that specifies desired system-level
services and their QoS. The system-level solutions developed according to PBSE
principles will guarantee that the CBS satisfies those properties in any environ-
ment that matches the assumptions stated in the models.

One of the primary purposes of PBSE is to eliminate faults made in the early
phases of the overall life cycle: It is well known that faults made in the course
of requirements capture phases are the dominant causes of project setbacks or
operational failures, hence the major contributors to inflated costs and project
overruns. Another primary purpose of PBSE is to reduce the complexity of the
system integration and final testing phases, phases which are not well mastered
under current practice. Finally, PBSE aims at composability checking, target-
ing the reuse and composition of designs and proofs, not just the reuse and
composition of software or hardware components.

This paper provides an overview of the rationale and life cycle of PBSE,
and introduces the virtual system model as our primary means to structure the
requirements capture phase. It is organized as follows: The rationale for the
need of a proof-based approach and some related work is given in Section 2.
An overview of the PBSE life cycle, with particular emphasis on the PBSE
requirements capture phase, is contained in Section 3. Section 4 provides a short
example of the reuse possible with PBSE. The definition and usage of the virtual
system model is presented in Section 5. A concluding discussion of PBSE in
Section 6 completes the paper.

2 Using formal SW engineering methods puts you in the desirable situation of having
a continuous chain of proofs from problem specification to implemented solution.

166 M. Biely, G. Le Lann, and U. Schmid

2 Why PBSE ?

Consider critical systems, where criticality is related to the possible loss of life,
mission or simply money. Obviously, such systems should be designed in a way
that prevents such losses, or, more realistically, makes them sufficiently unlikely.
For air traffic control systems, for example, it is required that system unavail-
ability shall be less than 3 seconds a year, which translates into an availability
figure of 1 − 10−7. With today’s practice, however, too many of these systems
fail, and too many projects are canceled, are late or more expensive than planned
due to the difficulty of meeting such stringent requirements.

Software design & software development is commonly blamed for these prob-
lems, giving raise to the so-called “software crisis” in critical systems design.
And indeed, as software became the dominating factor in today’s computer-
based systems, there is always some piece of software running when a system
failure occurs. However, simply accusing software turns out to be wrong or at
least misleading in many cases, since doing this ignores the difference between
the cause of a system failure, i.e. the fault, and its observed manifestation, i.e.
the failure.

In fact, several studies show that software is better than its reputation: For
instance, an analysis of the causes of failures of the US public switched telephone
network [4] shows “that SW errors caused less downtime (2%) than any other
source of failure except vandalism”. Rather, overloads were recognized as the
dominant cause (44%). Another example where software was blamed for a system
failure is the well-known loss of the Ariane 5/501 launcher, which caused a
financial loss in the order of 450 Me and a 1 year delay for the Ariane 5 program.
Although the inquiry board [5] concluded that poor software engineering practice
was the culprit, other problems actually caused the failure [6,7].

Rather than in software [engineering], these and many other critical system
failures have their roots in poor system engineering practice [8]. Of course this is
not meant to suggest that the computer industry does not have problems in the
field of software engineering, but rather that there are other areas (i.e., system
engineering) that are even less mastered and have not received enough attention.

One major reason of failure is related to the specification generation pro-
cess: With formal software engineering methods, under some restrictions, it can
be verified that specifications are implemented correctly. But where do these
specifications come from? It does not help much to be provided with a software
component “proved correct” vis-à-vis its specification, if that specification is in-
appropriate (“incorrect”) for the application/system problem considered. Proper
requirements engineering methods [9,10,11,12] must be utilized to provide an
agreed-upon specification of the problem to be solved. In general, however, this
is difficult due to the inevitable intertwining of requirements and solutions [13]
and the often conflicting requirements of different stakeholders [14]. In the con-
text of ASSERT, the problem is further exacerbated by the difficult fault-tolerant
distributed real-time computing problems typical of aerospace applications.

Another major problem is the level of complexity involved with proving
systems-in-the-large [3,15]: Even a locally verified system component can suf-

PBSE Using a Virtual System Model 167

fer from inconsistencies and hidden non-functional dependencies with respect to
other components in the system. So if such components, which behave correctly
when run in isolation from each other, are executed together within a system,
they could suffer from undesired interference and hence fail. The resulting fail-
ure is observed in the execution of the software, but the actual fault is rooted
within poor system engineering practice: Global verification would have spotted
system-level inconsistencies and hidden non-functional dependencies. Unfortu-
nately, however, such techniques suffer from well-known state explosion problems
and are hence infeasible for most real-world-size problems. Moreover, they are
necessarily “a posteriori” verification approaches, which do not a allow the de-
velopment of solutions that are correct-by-construction.

PBSE is the only method we are aware of that addresses these challenges in
a common framework: PBSE/TRDF shares some of the goals of the Design-by-
Contract approach [16] and the B method [17], notably the mandated use of non-
ambiguous specifications and the fulfillment of proof obligations. However, PBSE
addresses system-level concerns, regardless of the implementation technology
resorted to in fine, rather than software-related concerns only. In the remainder
of this paper, we will try to shed some light on how this is accomplished.

3 The PBSE Life Cycle

Before giving an overview of the phases of the PBSE life cycle, we need to
introduce some basic notations. As mentioned above PBSE is concerned with
building the correct specification of the problem to be solved, as well as building
the correct specification of the solution. A specification of a problem will be
denoted 〈Z〉, with 〈z〉 denoting the set of unvalued variables in 〈Z〉. The Design
specification of a system solution will be denoted [S], with the set of unvalued
solution variables [s] that correspond to the unvalued problem variables 〈z〉.
Typical examples of such unvalued variables are process sets, deadlines, worst-
case execution times, invariants for logical safety, density of failure occurrences.
Note that the size and type of 〈z〉 and [s] reflect the genericity of the specification
of the problem 〈Z〉 and the solution [S], respectively. The design specification
[S] is referred to as specification of a solution, because its implementation is
the solution, denoted S, of the problem stated in 〈Z〉. In ASSERT we do not
consider a specific mission, but rather (two) families of missions, resulting in two
very generic pairs {〈Z〉, [S]} of problem and corresponding solution specification,
which are referred to as System families (SF).

A problem specification 〈Z〉 actually comprises two sub-specifications:

– Models 〈m.Z〉, which stipulate operational, technological, and environmental
assumptions. They specify the adversary (Adv) for (the designers of) [S].

– Properties 〈p.Z〉, which stipulate the desired services and QoS. They must
be guaranteed by the operational system S (assuming [S] is implemented
correctly) in the presence of an adversary no stronger than 〈m.Z〉.
Specifications such as 〈Z〉 are written in restricted natural language: All terms

in 〈Z〉 must have formal or technical definitions in scientific or engineering dis-

168 M. Biely, G. Le Lann, and U. Schmid

Fig. 1. Schematic representation of the entire PBSE life cycle

ciplines (computer science terminology, mathematics, etc.), to the exception of
conjunctions, articles, and other syntactic elements. Examples include:
– “distributed” ≡ “current global state cannot be known”,
– “serializable execution” ≡ “interleaved execution identical to some sequential

execution”,
– “Byzantine” ≡ “arbitrary behavior”.

Figure 1 shows a schematic representation of the entire PBSE life cycle. Phases
that are proper to PBSE are the RC, SDV, FD and IT phases. The RC and SDV
phases precede the instantiation of [S], the FD phase precedes the instantiation of
every specific customized release of S, and the IT phase serves to derive automati-
cally the suiteof testsneeded to conduct the integration testing (global verification)
ofS.The implementation of [S] andunitary verification, on the other hand, are fully
within the realm of formal/informal software engineering.

Therefore, the PBSE process spans all RC, SDV, FD and IT life cycle phases
whenever a novel problem Z is considered and some solution S is to be fielded.
Conversely, after a pair {〈Z〉, [S]} has been constructed, only the FD and the IT
phases need be conducted for the fielding of some specific release of S. Cus-
tomized releases are obtained by assigning values to free problem variables
in 〈z〉 and running the FD phase, which produces values for the free system
variables in [s].

3.1 The Requirements Capture Phase

The Requirement Capture (RC) phase bridges the gap between the application-
centric requirements and the resulting CBS-centric requirements. The input

PBSE Using a Virtual System Model 169

of the RC phase is a document, called user requirements document (URD) in the
sequel, which describes the objectives of the application in the client’s domain-
specific terminology. The result of the RC phase is a specification of the system-
level computer-based problems/requirements 〈Z〉, which matches the URD.

In the RC phase, the application/mission requirements are separated from
reuse considerations— PBSE accommodates the mandatory use of pre-existing
partial solutions (e.g., COTS products). Design concerns, related to how 〈Z〉
could be solved and/or some [S] implemented, are totally ignored.

An existing or novel component of a to-be-designed system is called an
entity. The modeling of entities is done similar to the I/O automata formal-
ism [18]:

– Inputs are (specifications of) incoming events and associated shared data,
arrival laws (loads), failures,

– internals are (specifications of) processes (structure, worst-case execution
times) and shared data/states,

– outputs are (specifications of) outgoing events and associated shared data,
failures.

These models are intrinsic to a given entity. Inputs and outputs correspond
to behaviors in I/O automata. Properties serve to specify desired properties,
which may differ from (intrinsic) outputs.

Operationally, requirements capture is a two step process. In step 1, mod-
els and properties are captured on a per entity/level basis, in strict isolation of
each other. This work can be done by multiple teams in parallel, for different
entities or collections of entities. Since the collective behavior of sets of entities
(e.g. multiple programs multiplexed over a CBS) is usually also relevant, the
desired properties for such sets may also be captured. An example would be
the “serializability” property [19] for a set of application programs that share
updatable and persistent data. Finally, since computer-based systems are never
built from scratch in real projects, it is possible to specify, at RC time, which
pre-existing components (hardware, software) are to be reused. To be part of
the proof chain that spans from 〈Z〉 to [S], however, a reused component E
must have a companion technical leaflet (see Section 3.2) that also includes its
〈Z(E)〉.

In the second step of the RC phase, every entity E is revisited, considering all
models captured at the end of step 1 which are appropriate. For example, some
failure models and failure occurrence models have been captured (during step
1) for processing entities (abstractions of processors). Causes of such failures are
cosmic rays, vibrations, and so on. Separately, some failure models and failure
occurrence models have been captured (during step 1) for application entity E
(abstraction of a software/functional process). Causes of such failures are soft-
ware design and implementation faults. During step 2, entity E is “revisited”,
in order to specify its intrinsic behaviors in the presence of failing processing
entities (ignored at step 1).

170 M. Biely, G. Le Lann, and U. Schmid

In the absence of tools3, the RC phase is typically performed via interactive
meetings, where the stakeholders scan the application’s URD according to the
PBSE RC Guide. The RC Guide is a menu of classes of models and of properties
orthogonal to each other, that constitute a multidimensional space Π . The 10
classes that define Π (6 model classes, 4 property classes) are as follows:

– Computational Models, Resource and Data Models, Process Models, Event
and Event Arrival Models, Failure Models, Failure Occurrence Models

– Logical Safety, Liveness, Timeliness, Dependability properties

Any specification 〈Z〉 corresponds to a region within Π .
It is this process that makes it possible to capture the properties 〈p.Z〉 and the

adversary 〈m.Z〉 for the entire CBS. Thanks to 〈Z〉, it is then possible to detect
some impossibility results at the RC stage (in addition to incompleteness, over-
specification, etc.). Since those problems are found very early in the life cycle, in
particular, before any design, implementation and testing work has been done,
this distinguished PBSE feature considerably saves time and money. The SDV
phase is in fact entered only when some 〈Z〉 that is free from obvious impossibility
results has been established.

3.2 The System Design and Validation Phase

The other PBSE phase that occurs before any implementation work on the
system is the System Design and Validation (SDV) phase, which aims at building
the specification [S] of a solution S that provably solves the problem(s) captured
in 〈Z〉. The outcome of the SDV phase is a technical leaflet (TL) for pair {〈Z〉, [S]},
which is a 5-tuple {〈Z|z〉, [S|s], proofs, Cs, FD Oracle} consisting of

– the problem specification 〈Z〉, with unvalued variables 〈z〉,
– the solution specification [S], with unvalued variables [s] (which match 〈z〉),

usually resting upon some design assumptions (DA),
– proofs (or pointers to such proofs) that [S] meets 〈Z〉,
– feasibility conditions (FCs), i.e., analytical conditions that must hold between

〈z〉 and [s] in order to ensure that S’s valued properties (e.g. response times
and availability figures) hold,

– FD Oracle, (the specification of) a computer program that instantiates the
FCs in order to simplify and speed-up the FD phase; the FD Oracle can be
developed any time after completion of the SDV phase.

PBSE does not make any requirements on how the properties and models
are expressed. Typically, however, Logical Safety properties are expressed as in-
variants defined over values taken by sets of variables which represent the state
of the spacecraft (or more generally, of the CBS). Proofs for Logical Safety or
3 For the past decade, PBSE/TRDF has been applied without tool support. One of

the goals of ASSERT is to develop the prototype of a RC tool (SDV and FD tool
prototypes as well), whereby the RC work conducted manually at the beginning of
ASSERT would be replayed in a somewhat automated manner.

PBSE Using a Virtual System Model 171

Liveness are proofs in logic. Timeliness proofs are proofs in Combinatorial Anal-
ysis/Scheduling Theory. Dependability proofs are combinations of such proofs,
augmented with coverage analysis. In 〈p.Z〉, one finds Cov([S]), which stands for
the smallest acceptable coverage to be met by [S], as stipulated by the client.

The Technical leaflet for the whole CBS system or the system family —
that is for the pair {〈Z〉, [S]} — is inevitably a set of TLs, one for each of its
components, which can be either application-centric building blocks (ABBs) or
computer-centric building blocks (CBBs). Typical CBBs deal with system-level
issues like distributed resource management, failure detection and/or masking,
synchronization, concurrency control, timeliness, etc, whereas ABBs realize the
actual functional requirements. CBBs provide the abstraction of a computing en-
vironment as “perfect” as required for the ABBs. Quite often, “perfection” means
keeping invisible such things as concurrent computations or failures. Application
programmers, who design ABBs, can hence concentrate solely on application-
related issues, using their favorite formal/informal software engineering methods,
and need not worry about specific peculiarities or/and imperfections of the un-
derlying CBS. Moreover, ABBs can be developed and verified in isolation of each
other, with no (or quite limited) need for global or integrated verification.

The specification of the solution [S] is in fact a modular specification, which
results from building a design tree rooted at 〈Z〉: Top-level ABBs are typically
just “containers” for application-level functionality. The DAs of such top-level
ABBs are hence fairly idealistic, like “there are only perfect processors in the
system”. Since such assumptions have a rather bad coverage, this leads to corre-
sponding (sub-)problem specification(s) to be met by the specifications of novel
or reused CBBs, which must be dealt with at the next (lower) level of the de-
sign tree. This process of successive refinement proceeds along some number of
branches. On a given branch, one stops designing whenever both (1) the speci-
fication arrived at is deemed implementable and (2) its DAs have a coverage at
least as high as Cov([S]).

Another important output of the SDV phase are the FCs, which are typi-
cally a set of constraints required for the solution [S] to work. In order to sim-
plify checking of the feasibility of some particular dimensioning of the problem
variables 〈z〉 and calculating the corresponding dimensioning of [s], FCs are in-
stantiated as a computer program (referred to as an FD Oracle, valid for pair
{〈Z〉, [S]}), which can be developed any time after completion of the SDV phase.

3.3 The Feasibility and Dimensioning Phase

For any given problem 〈Z〉, the SDV phase leading to [S] — as well as implemen-
tation & unitary verification, which is not a PBSE activity— is conducted only
once, i.e., [S] for 〈Z〉 needs to be established and proved only once.

By contrast, the Feasibility and Dimensioning (FD) phase (as well as the
following instantiation phase and the IT phase) has to be conducted every time
a specifically customized release of [S] is to be fielded. The FD phase consists in
a user choosing some specific valuation V al(〈z〉) of the unvalued problem vari-
ables in 〈Z〉, running the FD Oracle, and (if possible) obtaining the resulting

172 M. Biely, G. Le Lann, and U. Schmid

valuation V al([s]) of the unvalued system/solution variables in [S]. For exam-
ple, this is how one knows the smallest period of activation of a scheduler, the
smallest memory space for a waiting queue, or the smallest degree of redundancy
which are necessary for meeting the required reliability figures. If the FCs are
violated, the FD Oracle indicates the reasons why, in which case some of the
values assigned to 〈z〉 must be “relaxed” (e.g., some deadlines augmented).

3.4 The Integration Testing Phase

As stated above, implementation & unitary verification is not a PBSE activity.
However, in order to maintain a continuous chain of proofs, not only from 〈Z〉
to [S], but also from [S] to S, automatic code generation and formal (local)
verification should be used also during implementation of S.

When implementation and unitary verification has been conducted for all
BBs that are part of S, the Integration Testing (IT) phase can be performed in
order to check whether the composition of BBs is correct— a daunting task under
current practice, since exponential complexity is to be faced. This is not the
case under PBSE, which eliminates the classic state explosion problem involved
in global verification and improves the achieved coverage compared to current
testing practices, respectively, for two reasons essentially:

– No or just some limited global verification is necessary (proofs replacing
possibly huge sets of tests).

– The suite of tests to be performed can be generated (if so desired) as a
by-product of running the FD Oracle, rather than by “guessing” them.

Consequently, with PBSE, integration testing work is typically unnecessary
or at least limited, since “composition correctness” has been proved during the
SDV phase (otherwise, [S] would not exist).

4 A Design and Reuse Example

Among the major advantages of PBSE, which is also a major target of ASSERT,
is its potential for re-using BBs specified and designed in former projects. Given
that (1) PBSE is concerned about system-level problems, which appear over and
over again in many different applications, and (2) reuse in PBSE also includes
reusing the design specifications and the proofs, the potential for reuse is indeed
high.4 Thanks to the TLs, the common practice of developing everything from
scratch and/or best-effort reuse of existing components can be replaced by a
systematic reuse exercise according to PBSE principles, i.e. conditioned upon
using provably correct compositions of components.

A major goal of ASSERT in this realm is the definition of system families
(SF), which represent a reasonably large class of space applications that share a

4 Consequently, the budget and time savings that can be achieved with PBSE are high
as well.

PBSE Using a Virtual System Model 173

sufficiently large set of common properties. Ideally, when a new application is to
be developed from a system family, most of the family’s generic BBs are reused,
and only the few ones that encapsulate application-specific functionality need to
be modified/added.

One of the pilot projects in ASSERT is devoted to the definition of a system
family for satellite missions. It is based upon a generic specification 〈Z(SF)〉 that
captures the CBS problem common to such missions. ASSERT shall end up with
the design specification (+ implementation) of a solution [S(SF)], consisting of a
set of generic BBs, that matches 〈Z(SF)〉. In order to develop a particular satellite
mission, say, a telecommunications satellite (TS), which is known to belong to
SF (since 〈Z(TS)〉 ≡ 〈Z(SF)〉), a user simply decides on some valuation V al(〈z〉)
mirroring the TS-centric instantiation of SF and runs the FD Oracle that was
built for 〈Z(SF)〉, [S(SF)]. In other words the user has to conduct the FD and
IT phases only. If 〈Z(TS)〉 �≡ 〈Z(SF)〉, then some SDV work is necessary, re-
using the BBs developed for SF. Consequently, the design tree for TS quickly
reaches nodes that are already available. As a consequence, real design and
implementation work is only needed for features that are specific for TS.

More generally, assume that, at some node of the SDV tree rooted at 〈Z(TS)〉,
one is contemplating the specification of a sub-problem {〈m.Z(X)〉, 〈p.Z(X)〉},
and that there is an existing TL matching this specification (searches for match-
ing TLs will be done by an SDV tool in the future). Since the specification [S]
found in this TL has been proved correct for 〈Z(X)〉, the corresponding solution
can simply be reused as such (with or without prior dimensioning), provided the
conditions for stopping the SDV work for that SDV tree node are met.

For example, consider that 〈Z(X)〉 is the specification of some problem that
was addressed in the A3M project5. The A3M objective was to develop a new
generation of generic components as basic building blocks for the development of
middleware targeting various on-board space applications [20]. The core CBBs
developed in A3M employ asynchronous distributed fault-tolerant algorithms
[21] for distributed consensus, coordination, and atomic commit, which are built
atop of Chandra/Toueg unreliable failure detectors [22]. They rest upon design
assumptions such as processor crashes, arbitrarily variable delays, and reliable
communications, but do not need any notion of global time in the system. Thus
the logical safety and liveness properties stated in {〈m.Z(X)〉, 〈p.Z(X)〉} hold
with these CBBs regardless of the (implementation-dependent) timing properties
of the underlying system.

When the design assumptions meet the conditions for stopping the SDV
work, then A3M solution can be reused in ASSERT as such. If some design
assumption, say, Y, does not meet the conditions for stopping the SDV work (e.g.,
if processor omission failures and/or unreliable communications are assumed for
the ASSERT SF), then Y translates into a sub-problem {〈m.Z(Y)〉, 〈p.Z(Y)〉}
(e.g., simulating processor crashes in the presence of omissions and providing
reliable communications over unreliable channels), and the SDV work continues.

5 Advanced Avionics Architecture and Modules, conducted by EADS Astrium, INRIA,
LAAS, Axlog Ingenierie and funded by ESA/ESTEC (2001–2003).

174 M. Biely, G. Le Lann, and U. Schmid

5 The Virtual System Model

The PBSE requirements capture phase poses some particular challenges in that
it targets inherent application needs only, rather than (premature) design con-
siderations. In fact, freezing requirements actually rooted in traditional or even
anticipated solutions in 〈Z〉 unnecessarily restricts the solution space for the later
SDV work. This problem became particularly apparent during the RC phase for
the complex system families/pilot projects in ASSERT, which was conducted
by multidisciplinary teams: Following industrial practice, and quite natural for
engineering disciplines, the initial versions of the URDs were heavily populated
with a priori chosen system architectures, failure management strategies, process
synchrony assumptions and other design considerations. Extracting out exactly
those requirements that must be fulfilled by a CBS in order to meet the demands
of the particular application (but nothing else) turned out to be a challenging
task, cf. [13].

5.1 Using the VS Model for RC

In order to alleviate this problem, we introduced the virtual system model (VS
model) for requirements capture. The virtual system model consists of several
levels, which represent different levels of abstraction of a computer-based system.
A level is populated by entities that represent components of a CBS at the
corresponding level of abstraction, i.e., can be seen as a suitable “projection” of
a CBS onto some specific abstraction level. Consequently, the VS model can be
employed for reasoning about a yet-to-be-designed system as well.

The levels foreseen in the VS model may be domain-dependent. In ASSERT,
the following levels have been identified to be necessary and sufficient for embed-
ded systems in the aerospace domain: Equipment & Humans level (EH-Level),
Application level (AP-Level), Middleware level (MW-Level), Basic Service level
(BS-Level), and Hardware level (HW-Level).

The EH-Level provides the highest level of abstraction. It “connects” a CBS
with its environment. It is populated with entities that may or may not be con-
sidered part of the CBS. They include external equipment, sensors and actuators
as well as human users. Although in the implemented system EH-Level entities
are connected by means of the HW-Level, which encompasses the raw computing
and communication hardware of a CBS, in the VS model the EH entities can
directly interact with entities at any level.

The AP-Level is made up of all the entities that instantiate the application’s
semantics. They are distributed/partitioned according to functional analysis
considerations.

MW-Level entities typically serve two purposes: First, they provide a level
of encapsulation, which allows application-level entities to access resources in a
way that is independent of their physical location. Second, they typically host
all the distributed fault-tolerant algorithms and protocols needed to “solve” 〈Z〉,
i.e., the system-level algorithms and protocols specified within [S].

PBSE Using a Virtual System Model 175

The BS-Level is populated with entities that augment/encapsulate the raw
services provided by HW-Level entities in a generic manner, in order to provide
universal and elementary services needed by entities residing at higher levels.
Typically, BS entities are operating systems, real-time kernels, link communi-
cation protocols, TCP-like communication protocols, I/O handlers, memory ac-
cess/management protocols, etc.

Finally, the HW-Level is populated with entities which provide the physical
capability to execute programs (SW, firmware, gate-level compiled code, etc.),
and to exchange bits over physical communication entities (both on-board and
long-haul communications, communications with sensors and actuators, etc.). In
other words the HW-Level provides the raw “execution machinery”, but does
not include programs written in HW, such as the logic in gate level compiled
code of an ASIC.

In fact, although the VS levels above appear to follow traditional implemen-
tation levels, it is important to understand that they are not meant to imply
any particular implementation, since an AP-Level entity may actually be imple-
mented as a real AP-Level SW process, or as a triple {AP-Level SW component,
BS-Level SW component, HW-Level HW component}, and might even involve
on-line reconfiguration. Moreover, VS levels do not have any particular hierarchi-
cal relationship. They must rather be viewed as sets of orthogonal entities that
may have all kinds of mutual interactions: AP-Level entities in the VS model are
not restricted to interact solely with the MW-Level in order to invoke services,
nor do MW-Level entities provide services to the AP-Level only. For example,
a BS-Level entity — and even a HW-Level entity— may invoke a service at the
MW-Level.

Consequently, the VS model used for conducting a PBSE RC phase is generic,
in the sense that it does not carry any restrictions relative to the construction
of 〈Z〉 or future SDV work leading to [S]. Hence, it can indeed be employed for
capturing 〈Z〉 for a yet-to-be-designed system in the PBSE RC phase.

The VS model opens up another level of “separation of concerns”, beyond
PBSE’s ability to deal with an application’s functional and non-functional as-
pects independently of each other: It allows to capture models and properties at
every VS level independently and in strict isolation of each other. This leads to a
significant reduction of the overall complexity of the PBSE RC phase and allows
even further parallelization of the RC work, which reflects reality as experts in
AP-Level software are most likely not experts in space-compliant hardware.

More specifically, the whole set of application requirements can be mapped
onto (or rather: “sliced” according to) the different levels of abstraction corre-
sponding to the VS levels. For every level, the resulting projections (“slices”)
can then be captured independently of the other levels. Note that properties are
always associated with the level where they are required to hold. If, for instance,
some AP level processes shall enjoy the ACID properties of transactions, the
atomicity, concurrency, isolation, and durability properties [19] are captured for
the AP-Level in 〈p.Z〉. Although those properties are likely to be provided by
MW-Level concurrency control algorithms in the yet-to-be-developed solution

176 M. Biely, G. Le Lann, and U. Schmid

Fig. 2. Visualization of the relation between system requirements and designed system
projected onto VS levels: The designed system must provide properties that are fully
within the specified properties when exposed to an adversary that is not stronger than
the specified models

[S], given the currently affordable technology, this shall not be frozen at RC
time. Hence, the ACID properties, which are captured at the AP-Level, are not
captured for the MW-Level. Any entity E of any level that has a TL show-
ing that E provides the ACID properties is a correct BB for providing those
properties at the AP-Level.

5.2 Using the VS Model for SDV

Figure 2 visualizes the resulting orthogonalization of the RC capture phase en-
abled by the VS model. Consider the AP-Level, for example. Let 〈m.Z(AP)〉
and 〈p.Z(AP)〉 denote the models and properties captured for this level, i.e., the
projections of the whole set of requirements “hidden” in the application’s URD
onto the AP-Level. PBSE SDV work must eventually ensure that, whenever the
HW-Level faces an adversary Adv(HW) that is not stronger than specified in
〈m.Z(HW)〉, the behavior of the forthcoming solution [S] (and hence the fielded
system S) projected onto the AP-Level must stay within the behaviors stated in
〈p.Z(AP)〉.

Of course, the SDV work that provides the solution specification [S] must
eventually consider all combinations of models captured in 〈m.Z〉 in order to con-
sider the worst-case failure occurrences at all levels simultaneously, for example.

PBSE Using a Virtual System Model 177

That is, in sharp contrast to the RC phase, where everything can be considered
in isolation, the SDV phase must deal with the combinatorial complexity of com-
bining the independently captured models and properties, including combined
failure occurrences, worst-case event arrivals, etc.

From the virtual system model point of view in ASSERT, the most important
levels for RC capture are the AP- and EH-Level, since entities at these levels
are in fact the “end users” of the CBS. Note that, for the EH-Level, only the
specification (models and properties) with respect to the interface(s) with the
CBS is of concern.

If there was no reuse of pre-existing products, nothing would have to be
captured at the levels below the AP-Level. Since systems are almost never im-
plemented from scratch, however, the RC phase is also concerned with the identi-
fication of models and properties that characterize pre-existing BBs at any level,
especially at the HW-Level and BS-Level. Any pre-existing product is either
trusted or not trusted. By definition, at the time of writing, all existing products
have been developed in some former projects without applying PBSE. Trusted
products are those which have been developed and tested following certain rules,
typically those stipulated by agencies or enforced by certification bodies (e.g.,
DO-178 or IEC standards, SILs in the UK).

Of course, although such products are considered trusted on the basis of
careful design, diversified redundancy, sufficient testing, space-compliance and
other means, this does not imply that they are fault-free. Nevertheless, the nature
of the technical data available for a trusted product makes it possible to do some
reverse PBSE work, i.e., to construct its TL a posteriori, at least partially (its
models and properties, as well as its design assumptions). This way, pre-existing
trusted products can be incorporated in 〈Z〉 and [S].

6 Concluding Discussion of PBSE

To achieve its ambitious goal of facilitating provably correct and reusable engi-
neering work for critical fault-tolerant distributed real-time embedded systems,
PBSE combines a number of different features in a common framework. First
of all, a dedicated requirements capture phase has to be conducted, which pro-
vides an agreed-upon specification of the problem 〈Z〉 to be solved. 〈Z〉 not only
describes what is to be achieved (properties 〈p.Z〉), but also under which condi-
tions/circumstances (models 〈m.Z〉). The VS model has been introduced as an
effective means to capture those properties and models in isolation of each other.

In general, conducting a requirements capture phase is difficult, for several
reasons, such as: The intertwining of requirements and solutions, conflicting re-
quirements of different stakeholders or the need for early freezing of requirements
(waterfall model). PBSE does not suffer from those problems, however, for two
reasons essentially: First, PBSE focuses solely on non-functional CBS-centric
issues, which are reasonably independent of the particular application require-
ments. Second, the unvalued problem and solution variables 〈z〉 and [s] allow to
introduce a user-decided degree of genericity in 〈Z〉 and [S], respectively, which

178 M. Biely, G. Le Lann, and U. Schmid

effectively eliminates the well known problem having to nullify SDV work when-
ever 〈Z〉 is changed.

Finally, rather than on “a posteriori” global verification, PBSE rests upon “a
priori” proof obligations to be fulfilled in the course of system design activities.
PBSE hence necessarily saves time and money due to the fact that it provides
solutions that are correct-by-construction; no time and money are wasted on
trial and error-detection-and-correction iterations. Additionally, the concept of
reuse also goes beyond what is commonly associated with this term: Not only
existing implementations of BBs can be reused, but also their designs and proofs.
Component reuse in PBSE is in fact similar in spirit to the use of existing lemmas
for proving a new theorem in mathematics.

There is the widespread belief that proofs are too difficult to do in daily
practice, a problem that has also slowed down the acceptance of formal soft-
ware engineering methods. However, system engineers are not supposed to “do
the proofs” (unless they run into a non-generic or unknown system problem).
A fully developed PBSE process will eventually allow engineers and technicians
to simply use instruction manuals, supported by appropriate tools, as is the
case in other fields with good and mature engineering practice [23]: In hand-
books for electricians, for example, one finds rules for how to install derivations,
for computing voltages, etc. It is never the case that an electrician is asked to
demonstrate anew the correctness of his doings based on Ohm laws or Kirchoff
laws. Nevertheless, rules of good practice in mature engineering domains rest
entirely upon such scientific results. We anticipate that this is going to happen
to system engineering for computer-based systems as well: Rather than being
founded on “experience, “intuition”, or “good sense”, rules of good system engi-
neering practice will eventually rest upon science, and PBSE has been developed
for reaching this goal.

References
1. Le Lann, G.: Proof-based system engineering and embedded systems. In: European

School on Embedded Systems (Veldhoven, NL, Nov. 1996). Volume 1494 of Lecture
Notes in Computer Science., Springer-Verlag Pub. (1998) 208–248 invited paper.

2. Le Lann, G.: Models, proofs and the engineering of computer-based systems: A
reality check. In: Proc. 9th Annual Intl. INCOSE Symposium on Systems Engi-
neering: Sharing the Future. Volume 4. (1999) 495–502 Best Paper Award.

3. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishing (2000)

4. Kuhn, D.: Sources of the failure in the public switched telephone network. IEEE
Computer 30 (1997) 31–36

5. Inquiry Board Report: ARIANE 5— Flight 501 Failure. (1996) Available online
http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf.

6. Le Lann, G.: An analysis of the ariane 5 flight 501 failure—a system engineering
perspective. In: Proceedings of the IEEE International Conference and Workshop
on Engineering of Computer-Based Systems. (1997) 339–346

7. Le Lann, G.: The failure of satellite launcher ariane 4.5. Safety Critical Mailing List
at http://www.cs.york.ac.uk/hise/text/sclist/lelannariane.html Archived
Contributions, Contribution on the Failure of Ariane 5 flight 501 (1999)

PBSE Using a Virtual System Model 179

8. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6 (1997) 1–30

9. Jackson, M.: Software requirements & specifications: A lexicon of practice, princi-
ples and prejudices. ACM Press/Addison-Wesley Publishing Co. (1995)

10. Zave, P.: Classification of research efforts in requirements engineering. ACM Com-
put. Surv. 29 (1997) 315–321

11. Nuseibeh, B., Easterbrook, S.: Requirements engineering: A roadmap. In: ICSE
’00: Proceedings of the Conference on The Future of Software Engineering, ACM
Press (2000) 35–46

12. Jackson, M.: The meaning of requirements. Ann. Software Eng. 3 (1997) 5–21
13. Swartout, W., Balzer, R.: On the inevitable intertwining of specification and im-

plementation. Commun. ACM 25 (1982) 438–440
14. Sabetzadeh, M., Easterbrook, S.: Analysis of inconsistency in graph-based view-

points: A category-theoretic approach. In: Proceedings of the 18th IEEE Interna-
tional Conference on Automated Software Engineering. (2003) 12–21

15. Stevens, R., Brook, P., Jackson, K., Arnold, S.: Systems Engineering: Coping with
complexity. Prentice Hall (1998)

16. Meyer, B.: Applying design by contract. IEEE Computer 25 (1992) 40–51
17. Abrial, J.: The B Book. Cambridge University Press (1996)
18. Lynch, N.: Distributed Algorithms. Morgan Kaufman (1996)
19. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery

in Database Systems. Addison-Wesley Publishing Company (1987)
20. Honvault, C., Le Roy, M., Gula, P., Fabre, J.C., Le Lann, G., Bornschlegl, E.: Novel

generic middleware building blocks for dependable modular avionics systems. In:
Proceedings of the 5th European Dependable Computing Conference (EDCC-5).
Volume 3463 of LNCS., Budapest, Hungary, Springer Verlag (2005) 140–153

21. Hermant, J.F., Le Lann, G.: Fast asynchronous uniform consensus in real-time
distributed systems. IEEE Transactions on Computers 51 (2002) 931–944

22. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43 (1996) 225–267

23. Maibaum, T.: Mathematical foundations of software engineering: A roadmap. In:
ICSE ’00: Proceedings of the Conference on The Future of Software Engineering,
ACM Press (2000) 161–172

Evaluation of the Impact of Congestion on
Service Availability in GPRS Infrastructures

Paolo Lollini1, Andrea Bondavalli1, and Felicita Di Giandomenico2

1 University of Florence, Dip. Sistemi e Informatica,
viale Morgagni 65, I-50134, Italy

{lollini, a.bondavalli}@dsi.unifi.it
2 Italian National Research Council, ISTI Dept.,

via Moruzzi 1, I-56124, Italy
digiandomenico@isti.cnr.it

Abstract. This paper deals with the congestion analysis of a GPRS
infrastructure composed by a number of adjacent cells partially over-
lapped. We consider one cell as affected by an outage and through a
transient analysis we evaluate the effectiveness of a specific class of re-
source management techniques for congestion treatment in terms of ser-
vice availability related indicators. The classical availability analysis is
thus enhanced, by taking into account the congestion following outages
and its impact on user’s perceived QoS, both in each cell and in the
overall GPRS network. In order to efficiently solve the large and com-
plex model capturing the network’s behavior, we introduce a solution
technique in which the solution of the entire model is constructed on the
basis of the solutions of the individual sub-models.

1 Introduction

Congestion events constitute a critical problem in the operational life of net-
worked systems. A network is congested when the available resources are not
sufficient to satisfy the experienced workload traffic, and this can occur for many
reasons, such as in case of extraordinary events determining an increase of traffic,
or in case of unavailability of some network resources because of malfunctions
(outage). Careful management techniques are necessary, to alleviate the conse-
quences of such phenomena. The IST-2001-38229 CAUTION++ project [1] aims
at building a resource management system to efficiently cope with congestion
events in heterogeneous wireless networks. Management techniques are usually
equipped with internal parameters, whose values have to be properly assigned
in accordance with the specific system characteristics. In order to support this
“fine-tuning” activity, a model-based analysis is promoted in CAUTION++ to
analyze the behavior of the management techniques and to understand the im-
pact of techniques and networks configuration parameters on properly identified
Quality of Service indicators.

In this work, the focus is on the General Packet Radio Service (GPRS) tech-
nology, which has been already analyzed in previous studies under more sim-
plistic network configurations. An inspiring work is certainly [2], in which the

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 180–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Evaluation of the Impact of Congestion 181

authors analyze the dependability of a GPRS cell under outage conditions. An-
other work ([3]) evaluates the effects of outage periods on the service provision
considering two GPRS cells partially overlapping (and then possibly interacting),
and accounting for outage congestion treatment and outage recovery.

In this paper, we perform a major extension and refinement to the previ-
ous studies, by setting up a modeling framework able to deal with a general
GPRS infrastructure, where clusters of cells are considered, each cluster being
realized through a number of partially overlapping cells. In case of an outage
experienced by a cell in a cluster, a Resource Management Technique (RMT)
is put in place to alleviate the congestion in the affected cell by distributing
part of its traffic (users requests) on all the neighbor cells. In such a system
context, we propose a methodology to evaluate the impact of congestion treat-
ment on all the cells. The purpose of such analysis is to provide feedbacks for
an optimal tuning of the parameters of the RMT (namely, the number of users
to switch), so as to have the highest efficacy from its application towards re-
solving the congestion event. The definition of the general framework for the
analysis of GPRS infrastructures has required a relevant effort, especially in
the evaluation phase, due to the high level of complexity that can lead to very
large state spaces for state-based analytical solutions or unacceptably long so-
lution times for simulations. In order to efficiently solve the large and com-
plex model capturing the network’s behavior, we introduce a solution technique
that follows a “divide and conquer” approach, in which the solution of the en-
tire model is constructed on the basis of the solutions of the individual sub-
models.

In the literature, many works tried to master complexity developing new
techniques to solve models. [4] details some techniques for generating and solv-
ing large state-space representations of models. In [5,6], a specific hierarchi-
cal/modular modeling approach is adopted in order to better cope with system
complexity and state-space explosion problems. [7] deals with the modelling and
evaluation of phased-mission systems devoted to space applications, proposing a
two level hierarchical method that allows to model such systems and to master
the complexity of the analysis. Unfortunately, all these works and the others we
are aware of are limited in their applicability and alleviate, but not completely
solve, the complexity of the problem. Therefore, as a universal methodology for
modeling and evaluating all types of complex systems does not exist, we define
in this paper an ad-hoc methodology specifically tailored for the wireless system
under analysis.

The rest of this paper is organized as follows. Section 2 presents the system
context and the measures of interest. Section 3 introduces the solution technique
adopted to perform the QoS analysis, and provides an overview of the models
defined to represent the GPRS infrastructure and the behavior of the resource
management techniques. Then, in Section 4 the numerical results of the sim-
ulation studies are presented and discussed. Conclusions are finally drawn in
Section 5.

182 P. Lollini, A. Bondavalli, and F. Di Giandomenico

2 The System Context and QoS Indicators

We address a generic GPRS infrastructure, whose topology results in clusters
of cells partially overlapping. To cope with congestion events, which may af-
fect GPRS cells, e. g. due to a temporary lack of a number of traffic channels
or to failures of their architectural components (as detailed in [2]), we assume
that appropriate RMTs are applied. Instead of focusing on a specific RMT, we
consider the class of RMTs which operate congestion alleviation by reducing
the traffic of the congested cells, which is redirected to the neighbor partially
overlapping cells. That is, a cell resizing is performed, and those users in the
area no more covered by the resized cell are assigned to a neighbor cell cover-
ing the area where the users are located (if such an overlapping cell exists; in
general, some users can be lost because of the black-spot phenomenon). This
implies that the user population attached to such neighbor cells increases, thus
affecting the QoS of such cells. Once the congestion is overcome, a re-switching
process is operated to restore the initial user population. In order to analyze
the effects of the traffic reconfiguration, we developed a methodology which
is based on defining and separately solving sub-models capturing the behavior
of those cells involved in the traffic reconfiguration applied through the RMT,
that are the congested cell (called the sending cell) and a varying number of
neighbor cells (called receiving cells). We call this set of cells a congestion-effect
cluster. At a certain instant of time, a number of cells in the overall GPRS in-
frastructure could be experiencing a congestion event. Since, as just said, the
effects of applying a RMT are local to each congestion-effect cluster, the anal-
ysis of the congestion impact can be carried on independently for the different
congestion-effect clusters. Concerning a single congestion-effect cluster, three
scenarios could be theoretically observed: i) a sending cell overlaps with N re-
ceiving cells and no such receiving cells overlap with any other sending cell; ii)
a sending cell overlaps with N receiving cells and at least one of such receiv-
ing cells overlaps with another sending cell; iii) two or more overlapping sending
cells are surrounded by N receiving cells (not all overlapping with all the sending
cells).

In many cases the congestion of a cell lasts a short time (e.g. in case the
partial outage is caused by a software error that can be fixed in a few minutes
restarting the software); then, the probability of having multiple congested cells
in a congestion-effect cluster is low and it would be reasonable to neglect the
cases ii) and iii) above, and restrict to consider scenario i) only. Therefore, in the
following we will refer to the congestion-effect cluster scenario depicted in Figure
1(a). Anyway, accounting for the other situations would not require changing the
principles at the basis of our methodology and the steps it is composed of, but
necessitates some extensions to the developed models (especially for the case ii)
where a cell may contemporary receive users from multiple sending cells, while
case iii) would be simply treated considering the set of overlapping sending cells
as a single sending cell).

As mentioned, we do not concentrate on a specific resource management
technique, but we consider the class of techniques that ultimately result in a cell

Evaluation of the Impact of Congestion 183

CELL-1

CELL-2CELL-N

CELL-3

CELL

. . .
.

Black-spot
Before

reconfiguration
action

After
reconfiguration

action

Te
xt

Te
xt

Te
xt

Te
xt

Te
xt

Te
xt

Theoret
ical

Distribu
tion

Te
xt

Te
xt

Te
xt

Te
xt

Te
xt

Te
xt

Real
Distribu

tion

CELL CELL-i

Switching
procedure

Re-Switching
procedure

Theoretical
Users Switching

Distribution

Real
Users Switching

Distribution

Te
xt

Te
xt

Te
xt

Te
xt

Te
xt

Te
xt

Theoret
ical

Distribu
tion

Te
xt

Te
xt

Te
xt

Te
xt

Te
xt

Te
xt

Real
Distribu

tion

Theoretical
Users Re-Switching

Distribution

Real
Users Re-Switching

Distribution

(a) (b)

Fig. 1. (a) Congestion-effect Cluster and (b) Theoretical and Real Users Switching/Re-
Switching Distributions

resizing or, equivalently, in a switching of users from one cell to another(s). The
considered techniques are fully identified by the following characteristics:

1. the sending cell (CELL), that is the cell affected by outage;
2. the list of the receiving cells, that are the cells involved in the reconfiguration

action (CELL-1, . . . , CELL-N);
3. for each receiving cell CELL-i (with i=1, . . . , N), the types of users to

switch. A user may be: i) in the idle mode if he/she is not making any service
request to the network system; ii) in the active mode if he/she is attempting
to connect the network to get a service, and finally iii) in the in-service mode
if he/she is connected and awaiting to get the service completed;

4. for each couple of cells [CELL,CELL-i] and type of users, the “theoretical
users switching/re-switching distribution”, that is the theoretical number
of users that the technique expects to switch/re-switch at varying of time.
It is only a theoretical distribution since, during the switching/re-switching
phases, the number of available users can be lower than the corresponding
theoretical value (Figure 1(b)), as we will emphasize later.

The goal of our analysis is to investigate the effects of outage, congestion
treatment and outage recovery on the service provision, with special attention
on the user perception of the QoS. More precisely, we aim to analyze the behavior
of the network during the following temporal events (see Figure 2):

– At time T0, an outage occurs in the central cell (CELL), thus determining
congestion some time after;

– At time T1, the switching procedure starts, causing some users to be switched
from the congested cell to its adjacent ones;

– At time T2, the outage ends;
– At time T3, a Resource Management System (RMS) reacts to the end of the

outage and starts the re-switching procedure from (CELL-1, . . . , CELL-N)
to CELL.

184 P. Lollini, A. Bondavalli, and F. Di Giandomenico

Fig. 2. Scheduled Temporal Events

We are interested in the following service availability measures:

– the point-wise congestion perceived by the users at varying of time (PCf),
calculated as the percentage of the unsatisfied users with respect to the total
number of users in the cell. An unsatisfied user is a user that is requiring a
service but is not still served (active user);

– the total congestion indicator (TCi), inspired by [8], representing the av-
erage congestion perceived by the users in a considered interval of time
(E[PCf]).

3 How to Model and Solve the System

The main problems in solving the model capturing the overall network’s behav-
ior are the time complexity (for the simulation) and the state space dimension
(for the analytical solution), that rapidly increase if the number of receiving cells
increases. Therefore, we investigated a modular approach, in which the solution
of the entire model is constructed on the basis of the solutions of its individ-
ual sub-models. A simple, efficient solution would consist in splitting the overall
model of Figure 1(a) in a number of simpler sub-models to be solved separately,
for example one for each cell. In this case, the main problem we have to cope with
is the temporal dependency between the congested cell and each of the receiving
cells during the switching/re-switching procedure. In fact, as shown in Figure
1(b), the “theoretical” and the “real” users switching/re-switching distributions
can be different, because of a lack of available users to be switched/re-switched
at a specific time instant. For example, suppose that a RMT states to instanta-
neously switch X active users from CELL to CELL-i (theoretical distribution).
If, at switching time, only Y active users are available (with Y < X), the switch-
ing procedure will follow a different (real) distribution: Y active users will be
instantaneously switched, while X −Y users will be switched one by one as soon
as they become available.

To properly cope with this temporal dependency, we decomposed the overall
model of Figure 1(a) in a set of more simple sub-models, each one composed
by the couple [CELL,CELL-i]. The temporal dependency disappears as each
sub-model manages the switching/re-switching procedure between sending and
receiving cells.

In our developed methodology, a top-down approach is adopted to move
from the entire system description to the definition of more simple sub-models.

Evaluation of the Impact of Congestion 185

Then, the model solution process follows a bottom-up approach: the solution
of the entire model is constructed on the basis of the solutions of its individual
sub-models.

CELL-1CELL CELL-NCELL

(type B model)

SOLVER SOLVER

. . .

. . .

. . .QoS measures for
CELL-1

Real Users Re-Switching
Distribution from
CELL-1 to CELL

QoS measures for
CELL-N

Real Users Re-Switching
Distribution from
CELL-N to CELL

Real Users Re-Switching
Distribution from

CELL-1, ..., CELL-N to CELL
CELL

(type C model)

SOLVER
QoS measures for

CELL

(type A model)
(type B model)

(type A model)

Fig. 3. Modeling and solution technique

It is a three step methodology. As it can be seen from Figure 3, we first
decompose the overall model in N independent sub-models, each one composed
by two cells: the first cell is always that affected by the outage (CELL), while
the second is chosen from the other N receiving cells. Therefore, we solve N sub-
models separately. From the solution of each single sub-model, we obtain two
types of results for CELL-i :

– The QoS measures for CELL-i (a receiving cell), namely the percentage of
unsatisfied users with respect to the total population;

– The “real users re-switching distribution”, that is the real number of users
re-switched from CELL-i to CELL as time elapses.

We note that in this first phase we do not obtain any information relevant to
CELL, as each sub-model accounts for the re-switching procedure of only those
users that have been previously switched from CELL to CELL-i, leaving out
those users that have been previously switched from CELL to all other cells. In
order to provide the QoS evaluations for CELL (the central cell), we perform an-
other step in the solution technique. The “real users re-switching distributions”
from each CELL-i to CELL are collected and combined, obtaining the “real

186 P. Lollini, A. Bondavalli, and F. Di Giandomenico

users re-switching distribution” from CELL-1, . . ., CELL-N to CELL. Finally,
this distribution is given as input to another model (that represents the behavior
of the central cell considering the re-switching procedure from all the neighbor
cells to the central one) whose solution provides the QoS measures for CELL.
We note that this last model requires the “real users re-switching distribution”
as input, while the “real users switching distribution” is not explicitly required.
This happens because we suppose that a receiving cell could not refuse an in-
coming user, and then the switching procedure only depends on the behavior of
CELL (the sending cell).

3.1 The Types of Models Needed

In order to apply the methodology depicted in Figure 3 we need to construct
three types of models only: type A, type B and type C. In this paper all the
models are derived using Stochastic Activity Networks [9].

These models can be obtained as a specification of the model of Figure 4
representing an abstract view of a generic GPRS cell. The “internal GPRS cell
model” was deeply described in [2], and it models the behavior of a GPRS cell
during the random access procedure, when users compete to get a free channel.
In fact, when a mobile station (MS) needs to transmit, it has to send a channel
request to the network through the PRACH (Packet Random Access Channel),
that is a channel dedicated to the uplink transmission of channel request. Since
the network does not control the PRACH usage, the access method, based on a
random access procedure, may cause collisions among requests by different MSs,
and then may become a bottleneck of the system (see [10] for more details).

Fig. 4. A generic GPRS cell

Evaluation of the Impact of Congestion 187

The sub-model capturing the interactions between the central cell and the
neighbor cells is the “users switching/reswitching sub-model”. This sub-model
has to be specified in order to:

– represent the behavior of the congested cell (CELL) during outage, cell re-
sizing and outage recovery (type A model of Figure 3);

– represent the behavior of a receiving cell (CELL-i) during the resizing of the
congested cell (type B model of Figure 3);

– represent the behavior of the congested cell (CELL) during outage, cell re-
sizing and outage recovery using the provided “real users re-switching dis-
tribution” (type C model of Figure 3).

The generic model of Figure 4 works as it follows. When a user has been served,
a token exits from the “internal GPRS cell model”. This generic user has to be
mapped (using the topography activity) in the overlapping area of the cell (place
idleOverlapped) or in the non overlapping one (place idle), in accordance with
the topography of the network. The probability that a generic user is mapped in
the overlapping area is dynamically calculated considering the original number of
users in the overlapping area and the overlapping users that have been switched
to the other cells. When an idle user requests a new service, he/she becomes
active and enters in the “internal GPRS cell model” that simulates the random
access procedure of a GPRS cell. Finally, we note that the users switching and
re-switching procedure affects only the users in the overlapping area, both in
idle and in active mode.

For the sake of brevity we omit the definitions of type A and type C models
(see [11]), while in the following subsections we present the model for the receiv-
ing cell CELL-i and the overall model for the couple of cells [CELL,CELL-i].

Type B model. Type B model represents the behavior of a receiving cell
(CELL-i) during the resizing of the congested cell. It is obtained specifying the
“users switching/reswitching sub-model” of Figure 4 as shown in Figure 5. The
vertical black line separates the components belonging to the generic GPRS cell
model (on the left) from those belonging to the “users switching/reswitching
sub-model” (on the right).

Tokens in place activeSwitched (or myActiveSwitched) and idleSwitched (or
myIdleSwitched) represent, respectively, the number of active and idle users re-
ally switched from CELL to CELL-i. The input gate controller switch active
keeps the number of tokens in activeSwitched equal to the number of tokens in
myActiveSwitched, until the re-switching procedure starts. The input
gate controller switch idle performs the same action for the idle users. The
enable reswitch place contains one token if the re-switching procedure is
enabled, zero otherwise. Tokens in places commonActiveSwitched and
commonIdleSwitched represent, respectively, the active and idle users re-switched
from CELL-i to CELL.

Here, we briefly describe the model behavior following the temporal events
of Figure 2.

188 P. Lollini, A. Bondavalli, and F. Di Giandomenico

Fig. 5. “users switching/reswitching sub-model” for CELL-i

– Before time T0, the system is in steady-state.
– At time T1, the switching procedure from CELL to CELL-i starts and then

some tokens arrive in places activeSwitched and/or idleSwitched. Places my-
ActiveSwitched and myIdleSwitched follow the respective variations, thanks
to the input gates controller switch active and controller switch idle.

– At time T2 the outage in CELL ends and then, at time T3, the mark of
the place enable reswitch is set to 1 and the re-switching procedure starts.
The users re-switched from CELL-i to CELL are available in place common-
ActiveSwitched and commonIdleSwitched. The re-switching procedure ends
when places myActiveSwitched and myIdleSwitched are empty.

Overall model for [CELL,CELL-i]. In the first step of the solution tech-
nique depicted in Figure 3, type A and type B models have to be composed
together in order to build the overall model representing the behavior of each
couple of cells [CELL,CELL-i]. The two models are joined together using the
Join1 operation [12] provided by the Möbius tool [13], and interact each other
through the following shared places: activeSwitched, idleSwitched, commonAc-
tiveSwitched, commonIdleSwitched, enable reswitch.

3.2 About Effectiveness

The major characteristic of this technique is its capability to manage the com-
plexity of the overall model, as we provide the solutions solving N+1 sub-models
only and combining some basic QoS measures. In case of state-based analyti-
cal solution, the state-space explosion problem is drastically reduced thanks to
1 The Join operator takes as input a) a set of submodels and b) some shared places

owning to different submodels of the former set. Its output is a new model that
comprehends all the joined submodels’ elements (places, arcs, activities) but with
the shared places merged in a unique one.

Evaluation of the Impact of Congestion 189

the lower number of states generated for each individual sub-model. In case of
simulation, the major advantages are related to:

– the mitigation of the stiffness-problem, if the submodels to be simulated
during Step 1 and 3 have less time scales than the monolithic model. This
property could be extremely useful in dealing with an heterogeneous network
composed by cells of different technologies, e.g. GPRS and UMTS (Universal
Mobile Telecommunications System);

– the decrement of the overall solution time, since the N sub-models consti-
tuted by the couple [CELL,CELL-i] in Step 1 can be solved concurrently.
This favors the scalability of the method, which can easily deal with high
numbers of receiving cells;

– the alleviation of the memory requirements for the simulator, as the sizes of
the sub-models to be solved are reduced thanks to the models decomposition.

Although both analytical and simulation solution methods can be applied, in
this paper we adopt the simulation approach to numerically solve the sub-models
obtained applying our methodology, using the simulator offered by the Möbius
tool. The main advantage in using the simulation is that it allows to represent real
system conditions better than analytical approaches do (e.g., to use distribution
functions more realistic than the exponential one).

4 Model Evaluation

We perform a transient analysis in the interval of time from the occurrence of
an outage (time T0) to the new system steady-state after the outage repair.

4.1 Settings for the Numerical Evaluation and Analyzed Scenario

We analyze a GPRS network composed of one central cell (CELL) and three
partially overlapping cells (CELL1, CELL2 and CELL3). In Figure 6 we detail
the values we assigned to the main parameters of each cell. All the four cells
have the same number of traffic channels (three) but different user populations;
therefore, each cell has a different workload level at steady-state.

We analyzed two scenarios, which have been set up in order to tune the follow-
ing two parameters of a resource management technique: activeUsersToSwitch,
that is the number of active users to switch, and outageReactionTime, that is
the time necessary to the Resource Management System to react to the outage.

– SCENARIO 1: The fine-tuning is performed in terms of the number of active
users to switch from CELL to each other cell. In particular, we consider three
cases: i) the case where no cell resizing is performed (no users switching),
ii) the case where the cell resizing involves 50% of the users in the over-
lapping area (active users to switch = 75), and iii) the case where the cell
resizing involves 100% of the users in the overlapping area (active users to
switch = 150). Moreover, we set the outageReactionTime parameter to 30
seconds and assumed that 10% of the switched active users are lost during
the reconfiguration action.

190 P. Lollini, A. Bondavalli, and F. Di Giandomenico

CELL
Users 180

with CELL1: 60
with CELL2: 50

Overlapped Users 150

with CELL3: 40
to CELL1: 0, 30, 60
to CELL2: 0, 25, 50

Active Users to
Switch

0, 75, 150

to CELL3: 0, 20, 40
to CELL1: 0, 3, 6
to CELL2: 0, 3, 5

Act. Users to Lose 0, 8, 15

to CELL3: 0, 2, 4

Users in CELL1 140
Users in CELL2 170
Users in CELL3 200

Outage Reaction Time variable

Fig. 6. Analyzed scenario: cell topography and fine-tuning parameters

– SCENARIO 2: The number of active users to switch from CELL to the other
cells is set to 75 users (30 to CELL1, 25 to CELL2 and 20 to CELL3). The
focus in this scenario is on evaluating the impact of the time necessary to
the Resource Management System to apply a traffic reconfiguration after the
occurrence of an outage. So, the parameter under tuning is outageReaction-
Time, for which three values have been considered: 15, 45 and 75 seconds.
This performance indicator is useful to set a maximum value on the time the
RMS is allowed to spend to elaborate a reaction to the observed overload.

We suppose that the switching and re-switching procedures are instantaneous.
Moreover, we suppose that the partial outage affecting the central cell consists
of a software error that reduces the number of available traffic channels from
3 to 1, and we set the outage duration to 120 seconds (average time needed
to restart the software). The outageEndReactionTime parameter (the time that
occurs between the end of the outage and the users re-switching) is set to 15
seconds (typical real value). In all the simulations we choose a relative confidence
interval of 0.1 and a confidence level of 0.95, that is in the 95% of the times, the
mean variable will be within 10% of the mean estimate.

4.2 Numerical Evaluation

In this section we show the results obtained from the simulations, both con-
cerning the Pointwise Congestion function (PCf, on the Y-axes) and the Total
Congestion indicator (TCi, in the labels of the figures). In all the figures plotting
the simulation results, the time interval on the x-axis starts at time 200 sec. (the
outage occurrence time) and ends at time 556 sec. (the time the new steady-state
is reached in all the cells). The labels T0, T1, T2 and T3 on the x-axis have the
same meanings as in Figure 2.

Evaluation of the Impact of Congestion 191

2

4

6

8

10

12

14

16

18

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e

C
on

ge
st

io
n

fo
r

C
E

LL
2

(%
)

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=170

T0 T1 T2 T3

No Users Switching [TCi=4,40%]
Active Users to Switch = 25 [TCi=6,42%]
Active Users to Switch = 50 [TCi=7,40%]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e

C
on

ge
st

io
n

fo
r

C
E

LL
 (

%
)

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=180

T0 T1 T2 T3

No Users Switching [TCi=26,53%]
Active Users to Switch = 75 [TCi=15,68%]

Active Users to Switch = 150 [TCi=15,45%]

(a) (b)

Fig. 7. (a) Congestion Perceived in CELL2 and (b) Congestion Perceived in CELL

Evaluation in scenario 1: Tuning of parameter ‘activeUsersToSwitch’.
Figures 7(a) shows the congestion perceived by the users (the Point-wise Conges-
tion function) in CELL2 at varying of the number of the active users to switch
(0%, 50%, 100% of the number of users in the overlapping area). Obviously,
the TCi value increases when we increase the value of the activeUsersToSwitch
parameter. We note that the congestion level at steady state (time T0) is about
4%, after time T1 (the switching time), the congestion initially increases, but de-
creases immediately after. This happens when the receiving cell is not congested
and, then, can absorb the added traffic. The other two receiving cells (CELL1
and CELL3) behave similarly and they are not presented in the paper for the
sake of brevity. They only vary in the workload at steady-state level that is lower
for CELL1 (about 1%) and higher for CELL3 (about 14%), mainly because of
a different number of users camped in. Moreover, the traffic overload induced in
CELL3 has the most negative impact, as the congestion level at steady-state is
the highest.

Figure 7(b) shows the congestion perceived by the users in the cell affected
by the outage at varying the number of the active users to switch from this cell
to all the adjacent cells. From the figure we note that if we increase the total
number of active users to switch from 75 to 150, the TCi value remains the same.
This happens, in general, when the system tries to switch “too many” users and
then the negative effects due, for example, to the augmented number of lost users
is equivalent to the positive effects due to the augmented number of switched
users. At time T1 the switching procedure starts and the perceived congestion
is beneficially affected by the actuation of the technique in a very short amount
of time. At time T2 the outage ends, CELL starts working properly and the
congestion rapidly decreases, while increases from time T3 (because of the users
re-switching), till reaching again the steady-state level.

Figure 8(a) shows the behavior of the overall GPRS network composed of
CELL, CELL1, CELL2 and CELL3 at varying values of the activeUsersToSwitch
parameter. We analyze the percentage of the unsatisfied users in the network
with respect to the total number of users camped in the four cells (in this example

192 P. Lollini, A. Bondavalli, and F. Di Giandomenico

5

10

15

20

25

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

O
ve

ra
ll

P
oi

nt
w

is
e

C
on

ge
st

io
n

(%
)

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=690

T0 T1 T2 T3

No Users Switching [TCi=12,77%]
Active Users to Switch = 75 [TCi=10,78%]

Active Users to Switch = 150 [TCi=11,69%]

0

10

20

30

40

50

60

70

80

90

100

110

120

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

A
ct

iv
e

U
se

rs
 S

w
itc

he
d

fr
om

 C
E

LL
 to

 a
ll

ot
he

r
ce

lls

Time (sec.)

T0=200sec. - T1=230sec. - T2=320sec. - T3=335sec. - idleUsersToSwitch=0 - NumUsers=180

T0 T1 T2 T3

No Users Switching
Active Users to Switch = 75

Active Users to Switch = 150

(a) (b)

Fig. 8. (a) Overall Congestion Perceived and (b) Active Users Switched from CELL
to all other cells

180+140+170+200=690 users). We note that the 100% cell resizing curve (ac-
tiveUsersToSwitch=150) is worse than the 50% one (activeUsersToSwitch=75)
as the positive effects induced by the decongestion in CELL don’t compensate
the negative effects on CELL1, CELL2 and CELL3 (the receiving cells).

Lastly, Figure 8(b) shows the number of active users really switched from
CELL to the other cells. We note that the switching and re-switching proce-
dures are not instantaneous. This means that there are not enough active users
immediately available to be switched at time T1 (the switching time) and re-
switched at time T3 (the re-switching time).

10

12

14

16

18

20

22

24

26

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e

C
on

ge
st

io
n

fo
r

C
E

LL
3

(%
)

Time (sec.)

T0=200sec. - T1=variable - T2=320sec. - T3=335sec. - activeUsersToSwitch=20 - NumUsers=200

T0 T1 T1 T1 T2 T3

Outage Reaction Time = 15 sec. [TCi=17,17%]
Outage Reaction Time = 45 sec. [TCi=17,08%]
Outage Reaction Time = 75 sec. [TCi=16,79%]

0

5

10

15

20

25

30

35

40

45

50

55

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

P
oi

nt
w

is
e

C
on

ge
st

io
n

fo
r

C
E

LL
 (

%
)

Time (sec.)

T0=200sec. - T1=variable - T2=320sec. - T3=335sec. - activeUsersToSwitch=75 - NumUsers=180

T0 T1 T1 T1 T2 T3

Outage Reaction Time = 15 sec. [TCi=14,61%]
Outage Reaction Time = 45 sec. [TCi=17,42%]
Outage Reaction Time = 75 sec. [TCi=19,09%]

(a) (b)

Fig. 9. (a) Congestion Perceived in CELL3 and (b) Congestion Perceived in CELL

Evaluation in scenario 2: Tuning of parameter ‘outageReactionTime’.
Figure 9(a) shows the congestion perceived by CELL3 (one of the receiving cells)
at varying the time needed by the system to react to the outage (outageReaction-
Time parameter). As expected, the congestion increases if the outage reaction

Evaluation of the Impact of Congestion 193

time decreases, both concerning PCf and TCi, as the switched users reach the
cell earlier. The other receiving cells behave similarly (they only vary in the
workload at steady-state level) and then, for the sake of brevity, they are not
presented in the paper.

Figure 9(b) shows the congestion perceived by the users camped in the central
cell at varying of the outageReactionTime parameter. As expected, the TCi
decreases when reducing the outage reaction time, as the reconfiguration action
is applied earlier.

6

8

10

12

14

16

18

20

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

O
ve

ra
ll

P
oi

nt
w

is
e

C
on

ge
st

io
n

(%
)

Time (sec.)

T0=200sec. - T1=variable - T2=320sec. - T3=335sec. - activeUsersToSwitch=75 - NumUsers=690

T0 T1 T1 T1 T2 T3

Outage Reaction Time = 15 sec. [TCi=10,36%]
Outage Reaction Time = 45 sec. [TCi=11,01%]
Outage Reaction Time = 75 sec. [TCi=11,42%]

Fig. 10. Overall Congestion Perceived

Finally, Figure 10 shows the percentage of unsatisfied users in the overall
network at varying the outageReactionTime parameter. This is the percentage of
unsatisfied users in the network with respect to the total number of users camped
in it (690 users for the considered setting). We note that if the reaction time
parameter increases, the congestion perceived increases as well. The obtained
results allow performing an interesting investigation on the amount of time that
the system should be permitted to spend for its decision-making processes. For
example, if a maximum tolerable level of degradation is known a priori, by
looking at the results in Figure 10 it can be inferred a value for the maximum
outageReactionTime.

5 Conclusions

In this paper, the congestion analysis of GPRS infrastructures consisting of a
number of cells partially overlapping has been performed in terms of QoS indi-
cators expressing a measure of the service availability perceived by users. When
a congestion is experienced by one of these cells, a family of congestion manage-
ment techniques is put in place, to operate a redistribution of a number of users
in the congested cell to the neighbor ones, in accordance with the overlapping
areas. Since the service availability perceived by users is heavily impacted by the
congestion experienced by the cells, determining appropriate values for the users
to switch, so as to obtain an effective balance between congestion alleviation in

194 P. Lollini, A. Bondavalli, and F. Di Giandomenico

the congested cell and congestion inducement in the receiving cells, is a critical
aspect in such contexts.

In order to carry on such fine-tuning activity, a modeling methodology, ap-
propriate to deal with the system complexity, has been defined. In particular,
we introduced a solution technique following a modular approach, in which the
solution of the entire model is constructed on the basis of the solutions of the
individual sub-models.

Models solution through a simulation approach has been performed in order
to provide numerical estimates. The obtained results, although dependent on
the considered parameters setting, show behavior trends very useful to make an
appropriate choice of the number of users to switch, which is a critical parameter
for the congestion management technique. Moreover, an investigation on the
amount of time that the system should be permitted to spend for its decision-
making processes is carried on.

The defined modeling framework shows very attractive potentialities, being
it suitable to be employed in the analysis of other similar problems. Among the
devised future works on this stream, we mention two directions. On one side,
we could adapt this method to deal with other interesting scenarios, e.g. when
a cell is overlapped with several congested cells. On another side, it could be re-
used to analyze the behavior of a heterogeneous infrastructure, where different
network technologies (e.g., GPRS and UMTS) cooperate to reduce a congestion
situation. This last is a direction we already started to explore in the context of
the CAUTION++ project.

Acknowledgments

This work has been partially supported by the European Community through
the IST-2001-38229 CAUTION++ project and by the Italian Ministry for Uni-
versity, Science and Technology Research (MURST), project “Strumenti, Am-
bienti e Applicazioni Innovative per la Societa’ dell’Informazione, SOTTOPRO-
GETTO 4”. The authors want also to acknowledge the contribution given by
Stefano Porcarelli to the early phases of this work.

References

1. IST-2001-38229 CAUTION++ Project. CApacity and network management plat-
form for increased Utilization of wireless systems of next generaTION++.
http://www.telecom.ece.ntua.gr/CautionPlus/

2. S. Porcarelli, F. Di Giandomenico, A. Bondavalli, M. Barbera, I. Mura. Service
Level Availability Estimation of GPRS. IEEE Transactions on Mobile Computing,
Vol. 2, N. 3, 2003.

3. P. Lollini, A. Bondavalli, F. Di Giandomenico, S. Porcarelli. Congestion Analy-
sis during Outage, Congestion Treatment and Outage Recovery for simple GPRS
networks. In Proc. of the Ninth IEEE Symposium On Computers And Communi-
cations (ISCC’2004), Alexandria, Egypt, June 28 - July 1, 2004.

Evaluation of the Impact of Congestion 195

4. D. D. Deavours and W. H. Sanders. An efficient disk-based tool for solving very
large Markov models. Performance Evaluation, vol. 33, pp. 67-84, 1998.

5. N. Fota, M. Kaaniche, and K. Kanoun. Dependability Evaluation of an Air Traffic
Control System. In Proc. Third IEEE Int’l Computer Performance and Depend-
ability Symp. (IPDS), pp. 206-215, 1998.

6. K. Kanoun, M. Borrel, T. Moreteveille, and A. Peytavin. Availability of CAUTRA,
A Subset of the French Air Traffic Control System. IEEE Trans. Computers, vol.
48, no 5, pp. 528-535, May 1999.

7. A. Bondavalli, I. Mura, M. Nelli. Analytical Modelling and Evaluation of Phased-
Mission Systems for Space Applications. In Proc. of the High-Assurance Systems
Engineering Workshop, Pages:85 - 91, 11-12 Aug. 1997.

8. Chang-Yu Wang; Logothetis, D.; Trivedi, K.S.; Viniotis, I.; Transient behavior of
ATM networks under overloads. In Proc. of the Fifteenth Annual Joint Conference
of the IEEE Computer Societies. Networking the Next Generation (INFOCOM
’96), Page(s):978-985, vol.3, March 1996.

9. W. H. Sanders, and J. F. Meyer. A Unified Approach for Specifying Measures
of Performance, Dependability and Performability. In Dependable Computing for
Critical Applications, volume 4 of Dependable Computing and Fault-Tolerant Sys-
tems, pages 215-237. Springer Verlag, 1991.

10. ETSI, “Digital Cellular Telecommunication System (Phase 2+); General Packet
Radio Service (GPRS); Mobile Station (MS)Base Station System (BSS) Interface;
Radio Link Control/Medium Access Control (RLC/MAC) Protocol.” GSM 04.60
version 8.3.0 Release 1999.

11. P. Lollini, F. Di Giandomenico, A. Bondavalli and S. Porcarelli. Con-
gestion Analysis in a Multi-Cell GPRS Network. ISTI-CNR 2004-TR-26,
http://dcl.isti.cnr.it/Documentation/Papers/Techreports.html

12. W. H. Sanders. “Construction and solution of performability models based on
stochastic activity networks”. Ph.D. dissertation, University of Michigan, 1988.

13. D. Daly, D. D. Deavours, J. M. Doyle, P. G.Webster, and W. H. Sanders. Möbius:
An Extensible Tool for Performance and Dependability Modeling. In 11th Inter-
national Conference, TOOLS 2000, volume Lecture Notes in Computer Science,
pages 332-336, Schaumburg, IL, 2000. B. R. Haverkort, H. C. Bohnenkamp, and
C. U. Smith (Eds.).

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 196 – 211, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Characterizing Session Initiation Protocol (SIP) Network
Performance and Reliability

Vijay K. Gurbani, Lalita J. Jagadeesan, and Veena B. Mendiratta

Bell Laboratories, Lucent Technologies
Naperville, Illinois

{vkg,lalita,veena}@lucent.com

Abstract. The Session Initiation Protocol (SIP) has emerged as the preferred
Internet telephony signaling protocol for communications networks. In this
capacity, it becomes increasingly essential to characterize both the performance
and the reliability of the signaling entities utilizing the protocol. We provide an
analytical look at the performance of a SIP network as well as a reliability
model of SIP servers. Keywords: SIP, Stochastic Processes, Queueing
Analysis, Performance Analysis, Reliability Analysis.

1 Introduction

The Public Switched Telephone Network (PSTN) has evolved over a century to
become an integral part of human communications. Over the years, the network has
been tuned for performance and has evolved to become highly reliable, with
individual switches experiencing only a few seconds of downtime per year. As the
telecommunications industry moves towards a new network (the Internet) with a new
set of signaling protocols, media behaviors and routing protocols – which are
markedly different from the PSTN model – is it reasonable to assume that the
performance and reliability metrics established in the PSTN are applicable and
achievable in the new environment?

Performance analysis and reliability of circuit-based communication networks has
been well studied. Models exist in the PSTN that characterize performance in
telecommunication switches. One measure of performance in the PSTN is the Busy
Hour Call Attempt (BHCA) metric, which is defined as the number of call attempts
during the busiest hour of the day. The BHCA measures the capacity of a PSTN call
processing switch in terms of the total number of calls arriving at a switch during
peak periods. In commercial PSTN switches, it ranges from 1 million to 2 million
calls per hour. Another measure of performance is the switch cross-office delay,
where a typical value is 100-300 milliseconds (ms); the precise requirements for this
metric are specified by signaling message type.

Circuit switches for voice meet stringent requirements for reliability with expected
switch availability greater than 0.99999 and expected call loss of the order of tens per
million calls handled. For call loss, in the event of failures, the priority is to save calls
in progress over calls in the setup stage. This high reliability is achieved through

 Characterizing Session Initiation Protocol (SIP) Network Performance 197

redundancy of the switch elements, robust software and the implementation of
hardware and software fault tolerance mechanisms at various layers in the system.

Current trends in the telecommunications industry favor voice over Internet
Protocol (VoIP) technology. The introduction of the Session Initiation Protocol (SIP)
and the widespread adoption of the protocol by both wireless and wireline
telecommunication players has accelerated the trend. If VoIP is to become the
pervasive telecommunication model, then the performance and reliability of call
processing elements in the Internet needs to be on par with those of the circuit-
switched elements. To this end, there are three contributions of this paper. The first is
to provide analytical models for the performance analysis of a SIP network and use
the models to analyze the performance of a SIP network with respect to varying
arrival rates, service rates and network delays. The network delay is characterized
using one intermediary as well as a chain of intermediaries of varying length. The
second contribution of the paper is evaluating a SIP network for reliability and lost
calls. Given the industry trend towards using commercial-off-the-shelf hardware and
software components, our evaluation is based on utilizing generally available
application layer fault tolerance mechanisms as opposed to using proprietary solutions
implemented at lower layers. Finally, we compare our findings with the established
norms of PSTN performance and reliability.

The rest of the paper is organized as follows: Section II covers existing work
related to SIP performance. Section III provides a brief background on the
mechanisms of signaling exchange in the PSTN and a SIP network. Section IV
details the performance model and the results from the performance analysis. Section
V presents a reliability model combined with the performance model and the
subsequent results. We conclude the paper by summarizing our observations and
future work to be done in this area.

2 Related Work

Wu et al. [2] analyze SIP performance in light of SIP-T (SIP for Telephones) [3].
SIP-T is an effort to provide the integration of legacy telephone signaling into SIP
messages through encapsulation and translation. The PSTN call setup messages that
would normally flow between two PSTN switches are encapsulated and transported as
a payload over a SIP network connecting two PSTN islands. SIP-T also translates
certain PSTN call setup headers into their closest SIP equivalent to enable
intermediaries to route the request. Wu et al. analyze the queuing delay and queuing
delay variation using embedded Markov chains in a M/G/1 queuing model. Our work,
by contrast, analyzes performance under varying arrival rates, service rates and
network delays of an end-to-end native SIP ecosystem which includes multiple
intermediaries (SIP proxies). We also analyze the reliability, including call loss, of
SIP signaling entities through a hierarchical performance and reliability model.

The SIPStone benchmark [4] is an early attempt at characterizing server
performance in a way that is useful for dimensioning and provisioning a SIP network.
One of the aims of SIPStone is to enunciate a repeatable set of experiments in order to
compare different implementations across the uniform set of experiments. It assumes
the standard SIP trapezoid: a client conversing with a SIP intermediary, which in

198 V.K. Gurbani, L.J. Jagadeesan, and V.B. Mendiratta

turns converses with a destination server. Our work builds in part on SIPStone to
provide an analytical view of performance and reliability across a wider spectrum
which includes modeling a SIP network using one intermediary, and a chain of
intermediaries.

Zhu [10] analyzes the usage of SIP in the Third Generation Partnership Project's
(3GPP) IP Multimedia Subsystem (IMS). This analysis involves the usage of SIP in
the context of a centrally controlled architecture, which imposes additional
requirements on the protocol above and beyond those specified in [1]. Our analysis is
based on the protocol as specified in [1].

Lipson [12] presents an approach for using model checking of Markov Reward
Models to analyze properties of a simple SIP network. The focus is on transient
properties related to the number of calls processed prior to system failure or system
repair. Rewards are expressed as simple rates of incoming requests for call setups.
Our model, in contrast, is a hierarchical model consisting of a high-level Markov
Reward Model and a lower-level queuing network model. Furthermore, our model
considers implications of different fault tolerance approaches and we use closed-form
equations rather than model checking to analyze properties of our model.

3 Background

In order to study the performance of telecommunications systems, it is instructive to
understand the entities involved in call setup. We provide a brief overview of call setup
in the PSTN and compare it with call setup in the Internet using SIP.

PSTN Call Setup. In the PSTN, telephone users connect through the telephone system
into the central office (CO). Hundreds of COs may be installed in a metropolitan area.
Telephone traffic from end users terminates at the CO through a pair of wires (or four
wires) called the local loop or the subscriber loop. Telephone traffic from the COs is
generally aggregated into trunks and carried to a toll/tandem office from where it is
distributed to other toll offices. High usage trunks are established when the volume of
calls warrants the installation of high capacity between two offices.

A salient point about the PSTN is that the network used to route the media stream
between switches is different from the network used to route signaling messages.
Signaling messages between switches are routed over a packet-based network called
Signaling System Number 7 (SS7). Communicating switches exchange SS7 messages
to setup a call by allocating media resource end-to-end. Once the media resources have
been allocated and the call has been set up, the voice flows over direct media
connections between each intervening switch. More information about PSTN signaling
is available in [7].

Call Setup in SIP. SIP [1] is an application-layer protocol used to establish, maintain
and tear down multimedia sessions. It is a text-based protocol with a request-response
paradigm. A SIP ecosystem consists of user agents, proxy servers, redirect servers, and
registrars. Of special interest to us with respect to this paper are user agents and proxy
servers.

There are two types of SIP user agents: a user agent client (UAC) and a user agent
server (UAS). A UAC and a UAS are software programs that execute on a computer, an

 Characterizing Session Initiation Protocol (SIP) Network Performance 199

Internet phone, or a personal digital assistant (PDA). A UAC originates requests (i.e.
start a phone call) and a UAS accepts and acts upon a request. UASes typically
register themselves with a registrar, which binds their current Internet Protocol (IP)
address to an email-like identifier used to identify the user. This registration
information is used by SIP proxy servers to route the request to an appropriate UAS.

Proxy servers are SIP intermediaries that provide critical services such as routing,
authentication, and forking. A SIP proxy, upon the receipt of an incoming call setup
request, will determine how to best route the request to a downstream UAS.

The request to establish a session in SIP is called an INVITE. An INVITE request
generates one or more responses. Responses to requests indicate success or failure,
distinguished by a status code. Responses with status code 1xx (100-199) are termed
provisional responses and serve to update the progress of the call; the 2xx code is for
success and higher number for failures. 2xx-6xx responses are termed as final
responses and serve to complete the INVITE request. The INVITE request is
forwarded by a proxy (through possibly another chain of proxies) until it gets to its
destination. The destination sends one or more provisional responses followed by
exactly one final response. The responses traverse, in reverse order, over the same
proxy chain as the request. Figure 1 provides a time-line of call establishment
between a UAC and a UAS. The request is forwarded through a chain of proxies.

With reference to Figure 1, the UAC sends an INVITE to P1 and P1 routes the call
further downstream. From the UAC's reference, P1 is called an outbound proxy. P1
determined that the request should be forwarded to P2 (the UAS is in a different
domain). When the request arrives at P2, it queries its location server and further
proxies the request to the UAS. From the UAS point of view, P2 is the inbound
proxy. The UAS issues a provisional response followed by a final response. The call
is setup when the UAC receives the final response.

Comparing SIP entities to the PSTN, the UAS and UAC correspond to phones;
proxies act as 'switches'. However, unlike the PSTN, there is no signaling overlay
network. Both media and call signaling use the same network. Nor is there a notion of
a toll/tandem switch in the Internet. The routing fabric of the Internet assures that
packets containing voice or data are forwarded to their intended destination. More
information on Internet telephony signaling and SIP is available in [1, 8, 9].

4 Performance Analysis

The performance measures of interest for SIP networks are the steady-state mean
response time and mean number of jobs in system. The mean response time of a
proxy server is defined as the mean elapsed time from the time t1 an INVITE request
from an User Agent Client (UAC) arrives at the proxy server until the time t2 that the
proxy server sends a final response to the UAC. The mean number of jobs in system
is defined as the mean number of calls currently being set up or waiting to be set up
by the proxy server. Also of interest is the behavior of these performance measures as
a function of the mean arrival rate of incoming INVITE requests, the mean service
rates for processing SIP requests/responses, and the mean propagation delay between
adjacent SIP proxy servers in the network.

200 V.K. Gurbani, L.J. Jagadeesan, and V.B. Mendiratta

Fig. 1. SIP call establishment

4.1 Performance Model and Assumptions

We model a SIP proxy server as an open feed-forward queuing network, in which
arriving jobs correspond to INVITE requests received by the SIP proxy server from
an upstream UAC in a SIP network. The queuing network consists of sequences of
queuing stations that correspond to possible sequences of SIP requests and responses
during a call setup. Each queuing station does the servicing of the SIP
request/response at the corresponding point in the call setup sequence. In constructing
our model, we made some simplifying assumptions. First we model a "180 Ringing"
response and assume that immediately following this will be a final response (either a
2xx final response or non-2xx final response). When an INVITE request arrives at the
proxy, it is sent downstream and may engender a "180 Ringing" response or a non-
2xx final response.

Next, we make certain assumptions about the mean service time. In SIP, mean
service time will vary by implementation. For this analysis, we assume that it takes
1/μ mean time to service an INVITE request at a proxy and derive other service time
parameters from this base service time. Servicing a SIP message includes extracting
the message from the transport layer, parsing it, performing a location server lookup,
querying the DNS and serializing the request on a connection opened with the next
downstream entity. In response to the INVITE, the proxy will receive a 180, a 200, or
a non-200 response. Since the effort required to process a response is far less than
that for processing an INVITE, we assign a mean service time of 0.3/μ for processing
180, 2xx and non-2xx responses.

For simplicity, we assume a lossless network. This is not an unreasonable
assumption, loss rates of 10-7 are not uncommon in Internet2 [13]. Operational
networks will typically have very low packet loss rates to maintain good voice quality
and acceptable call setup delays. Finally, we assume a simple call flow from a UAC
to an outbound proxy, which transmits the call to an inbound proxy in the domain of

 Characterizing Session Initiation Protocol (SIP) Network Performance 201

the UAS and from there it arrives at the UAS. For this call flow, we model two cases:
one, the inbound proxy is the same as the outbound proxy (UAC P UAS), and,
two, there is a chain of proxies between the UAC and the UAS (UAC P1 P2
… PN UAS). We do not consider advanced SIP services such as forking.
Figure 2 shows the basic model.

Fig. 2. Model with no network delays

When an INVITE arrives at a proxy, with a probability of 0.8 it will engender a
"180 Ringing" response, and with a probability of 0.2 it will result in a failure
response. The failure leg models the behavior of a call that was not setup.
Following the model further, we note that with a probability of 0.9, the "180
Ringing" is followed by a "200 OK" response; i.e. the user associated with the UAS
successfully answered the call. With a probability of 0.1, we model the "180
Ringing" resulting in a non-2xx response; i.e. the UAS was successfully contacted
but the user did not pick up the phone. The fserv-180 and fserv-non-200 stations
model a UAS. A UAS does not proxy a request downstream; instead, it issues a
response. As such, it requires less computation than what a proxy undergoes when it
services a request. Hence, in the model, we have assumed a mean service time of
0.7/μ for sending the 180 followed by a 200 or non-2xx response. Similarly,
sending only a non-2xx response takes even less time, modeled by a mean service
time of 0.5/μ. Note that we assume that there is zero delay between the "180
Ringing" response and the "200 OK" response. In real systems there will be a
variable delay –– this is the time taken by the user to answer the call. The length of
this delay interval would impact the number of jobs in system performance measure
and also has implications for checkpointing.

In the base queueing model of a SIP proxy server depicted in Figure 2, each
queueing station is modeled as a M/M/1 queue. This model is an open, feed-
forward queueing network, since jobs arrive from an outside source, and there is
no feedback among queueing stations in the queueing network. Using standard
approaches [11], the mean number of jobs N in system is given by N = J

k=1

ρk/(1 - ρk), where ρk = λk/μk, λ1 = λ, λj = k=1
j-1

 (λkQ[k,j]) for 1 < j ≤ J, and J=6
is the number of stations in the queuing model. Q is the one-step probability
matrix corresponding to the queuing model, that is, Q[i,j] is the probability that a
job departing station i goes to station j. Since the queuing network is feed-
forward, we assume that the serv-INVITE station corresponds to station 1, and

202 V.K. Gurbani, L.J. Jagadeesan, and V.B. Mendiratta

the other stations are numerically ordered in the above equations so that Q[i,j] =
0 for all i ≥ j. The mean response time R for jobs is then given by Little’s law
[11], R = N/λ.
We now extend this model to include propagation delays between adjacent SIP

proxy servers and UAC and UAS’s in call setup paths. Propagation delays can be
modeled through a delay server; namely, a M/M/∞ queuing station with mean
service time given by the mean propagation delay. The extended model is shown in
Figure 3.

Fig. 3. Model with network delay

The prop-INVITE station models the propagation delay in proxying the INVITE
request to the downstream SIP entity, while the prop-180 station models the
propagation delay in receiving a 180 response, together with a 200 response or non-
2xx response, from the downstream SIP entity. The prop-non-200 station is similar.

The mean number of jobs in M/M/∞ stations is given by the arrival rate of jobs into
the station multiplied by the mean service time (i.e. mean propagation delay in our
model) [11]. It is thus straightforward to extend the earlier equations to compute
mean response time and mean number of jobs in system for this extended model.
Note that the model in Figure 2 corresponds to the extended model with propagation
delay of zero.

4.2 Results of Performance Analysis for SIP Proxy Servers

Using this approach, the mean response time for a proxy server is computed; the
results are shown in Figure 4. The plots show propagation delays from 0 to 10 ms,
corresponding to distances of 0 to 1000 miles between adjacent SIP entities
assuming delays of 1 ms per 100 miles. The INVITE service rate is fixed at 0.5 ms-

1. We observe that the mean response time is essentially linear with the arrival rate
for the range of values considered. As expected, the mean response time increases
with the mean propagation delay time. In our evaluated interval of arrival rates and
propagation delays, the mean response time is in an acceptable range (as compared
to the 100-300 ms for PSTN switches). Figure 5 shows the mean number of jobs in
system as the arrival rate varies. We observe that the mean number of jobs is quite
small (less than 10), even under propagation delays corresponding to a distance of
1000 miles.

We then compute these same measures of interest, this time varying the service
rates for processing INVITE requests. Figures 6 and 7 show the mean response

 Characterizing Session Initiation Protocol (SIP) Network Performance 203

time and mean number of jobs in system as the service rate is varied. In this
analysis, the arrival rate of INVITEs is fixed at 0.3 ms-1; i.e. 1 million BHCA.

Fig. 4. Mean response time under varying
arrival rates

Fig. 5. Mean number of jobs under
varying arrival rates

Fig. 6. Mean response time under
varying service rates

Fig. 7. Mean number of jobs under varying
service rates

204 V.K. Gurbani, L.J. Jagadeesan, and V.B. Mendiratta

4.3 Performance Model for Multiple SIP Servers

We now extend the model and analysis in two ways: first, to hosts running multiple
proxy servers for scalability, and second, to a network of SIP proxy servers.

Multiple Proxy Servers on a Single Host
Clearly a single server solution for a proxy is not scalable. We therefore provide
performance results for a multi-server proxy host. We extend the model of Figure 2
to queuing networks with the same structure, but with each M/M/1 queue replaced
by a M/M/m queue. The equations for computing the mean response time and mean
jobs in system are standard (c.f. [11]). Figure 8 depicts the performance results for
the model of Figure 2 with M/M/m queues, where the number of servers, m is
varied between 3 and 10, and the propagation delay is set to zero. The lower bound
of 3 servers corresponds to the minimum number of servers needed to ensure that
the queuing network is stable. A key observation from Figure 8 is that below a
certain threshold for the service rate μ (i.e. 0.3 INVITEs ms-1), the mean response
time to process requests can grow significantly even under small changes in the
service rate. Thus, this indicates the minimum service rate for multiple server hosts
to ensure robustness of the proxy server. Our second observation is that for values
of μ greater than this threshold, not only is the mean response time less sensitive to
changes in the service rate, it is also largely independent of the number of servers in
a single proxy server host. This implies that a small number of multiple servers
with a service rate of 0.3 is sufficient, so large numbers of servers or faster service
rates are not necessarily needed. Figure 9 depicts a similar analysis, where the mean
network delay is fixed at 1 ms. The results are similar to Figure 8, with an increase
in mean response time corresponding to the network delay.

Fig. 8. Mean response time of multiple server
host under varying service rates

Fig. 9. Mean response time of multiple
server host with varying service rates and
network delay

 Characterizing Session Initiation Protocol (SIP) Network Performance 205

Chain of SIP Proxy Servers
We next extend our analysis of a single server host in an orthogonal direction: namely,
to a network of proxy servers modeling multiple hops in an end-to-end network. We
thus extend our performance measures of interest of mean response time and mean jobs
in system to reflect the end-to-end network. In particular, the mean end-to-end response
time is defined as the mean elapsed time from the time t1 an INVITE request from an
User Agent Client (UAC) arrives at the proxy server until the time t2 that the proxy
server sends a final response to the UAC; this mean response time now includes the
time taken by all the intermediate proxies and the far end UAS to set up the call.
Similarly, the mean number of jobs in system is now defined as the mean number of
calls being set up or waiting to be set up by any of the intermediate proxy servers
involved in setting up the call.

In order to do this analysis, we need to recursively replace each station modeling the
far end in our queuing network by a copy of the queuing network. However, separately
replacing the fserv-180 and fserv-non-200 stations by copies of the queuing network is
incorrect, since the arrival rate into the copies of the queuing network would recursively
be a fraction (0.8 or 0.2) of the arrival rate into the base model. Hence, this recursive
model would incorrectly assume greater capacity in the system. We thus first use an
alternative model to our queuing network in which the fserv-180 and fserv-non-200
stations are replaced by a single fserv station. This model is depicted in Figure 10,
where Nserv is the sum of the mean number of jobs at stations fserv-180 and fserv-non-
200 computed from the model of Figure 2.

It is straightforward to show that, for any arrival rate λ, if the service rate μfserv is
given as λ(Nserv+1)/Nserv, the mean response time and mean number of jobs of this
alternative model and the original model are equivalent. We thus construct our model
of SIP networks by recursive substitution into this alternate model. In particular, we

Fig. 10. Equivalent model for analysis

recursively substitute the fserv station in this alternate model with a copy of this
alternate queuing network, and then compute the mean end-to-end response time and
mean number of jobs in the end-to-end system. A similar construction is done for the
extended model that included propagation delays. Figures 11 and 12 show the results of
this analysis, where the length of the proxy chain is varied from 1 to 6. The different
lines again correspond to varying the propagation delays. The arrival rate is fixed at 0.3
ms-1 and the service rate for INVITEs is fixed at 0.5 ms-1.

206 V.K. Gurbani, L.J. Jagadeesan, and V.B. Mendiratta

Fig. 11. End-to-end mean response time under
varying length of proxy chains

Fig. 12. End-to-end mean number of jobs
under varying length of proxy chains

5 Reliability Analysis

The reliability metrics of interest for the proxy server are the steady-state system
availability and the probability of job loss (i.e. loss of SIP call requests). We first
develop a standard reliability model for the single proxy server for various
replications schemes. The reliability model is then combined with the queueing
performance model of Section IV to predict the probability of job loss for these
replication schemes. For this analysis, we used the hierarchical reliability and
performability models and associated closed form expressions for computing
availability and loss probability presented in [5].

The existence of fault tolerance software running at the application layer, that
provides process and node error detection, recovery and checkpointing capabilities
(as appropriate), is assumed for the proxy server. As in [5], the server is assumed to
exhibit fail-silent behavior. When there is a server failure, the messages at the
server, could be lost or saved depending on the recovery mechanisms implemented.
The same applies to new messages arriving at the server during the detection and
recovery intervals. Since the queuing network performance model assumes an
infinite size buffer for the wait queue, messages are not lost due to buffer overflow.
Thus, in the event of a server failure, the following 3 message loss scenarios are of
interest: queued jobs, in-service jobs and new job arrivals when the system is down
are lost (Case V in [5]); queued jobs, in-service jobs and new job arrivals when the

 Characterizing Session Initiation Protocol (SIP) Network Performance 207

system is down are not lost (Case II in [5]); and queued jobs and in-service jobs are
lost and new jobs arrivals when the system is down are not lost (Case VI in [5]).

5.1 Reliability Models

Continuous Time Markov Chain (CTMC) models, which capture the failure, error
detection and recovery behavior of the server are evaluated for the following
replication schemes: no replication, cold replication and warm replication. Server
failures are caused by process or node failures, and it is assumed that there is only a
single failure in the system at any time.

No Replication. There is a single proxy server with no fault tolerance software.
Error detection and recovery are done manually. The unavailability of the server is
observed only after the failure is detected and recovery is initiated after detection.

Cold Replication. There are two proxy servers running in active/cold standby
mode with fault tolerance software at the application layer. Upon detection of a
failure of a process in the active node, the process is restarted and the system is
returned to a working state; with some probability this may require switchover to
the standby node. Upon detection of a failure of the active node the recovery action
is to switchover to the standby node. In this case the switchover time includes the
time required to bring up the node. We follow the cold replication model
given in [5].

Warm Replication. There are two proxy servers running in active/warm standby
mode with fault tolerance software at the application layer. In the event of active
process or processor failure, the standby node assumes the role of the active node
after detection of the failure and switchover. A new backup is started on another
available node. In the event of standby process failure, the process is restarted or, if
it exceeds the threshold of restarts, it is started on a different node. We follow the
warm replication model given in [5].

For all of the above replication schemes, availability is calculated from the
pure reliability models by adding the steady state probabilities of the server up
states. The pure reliability models at the high level and the queuing models
of Section IV at the lower level are combined to compute the probability
of call loss. In particular, rewards are associated with each state and
transition of the reliability model. Rewards associated with a state reflect the
rate of expected loss of call requests in that state; lost call requests
accumulate at the specified reward rate during the expected time spent in
the state. Impulse-based rewards associated with transitions reflect the
number of calls lost when the transition takes place. Expected rate of loss is
computed by the accumulation of lost call requests in states and during
transitions; we use the closed form equations from [5]. As in [5], loss probability is
calculated by dividing the expected rate of loss of incoming jobs by the
expected job arrival rate.

208 V.K. Gurbani, L.J. Jagadeesan, and V.B. Mendiratta

5.2 Results of Reliability and Call Loss

The following parameter values (with exponential distributions) are assumed for the
reliability and call loss analysis of SIP proxy servers:

Job arrival rate, = 0.3 ms-1

Job service rate, u = 0.5 ms-1
Process failure rate, p = 0.1 day-1
Node failure rate, n = 0.05 day-1

Process failure detection rate p= 1 sec-1
Manual recovery rate, = 1/120 sec-1
Process restart rate, p = 1/30 sec-1

Process failover rate, n = 1/120 sec-1

The node failure detection rate, n is varied from 0.1 sec-1 to 15 sec-1. The node
switchover rate, s, from failed to warm standby, is varied from 1/5 sec-1 to 1/30
sec-1. The job (INVITE) arrival rate and service rate are as in the models of
Section IV.

Figure 13 shows the availability of a proxy server for different values of the node
failure detection rate for the case of no replication, cold replication and warm
replication. Node availability greater than 0.9999 is achievable with warm
replication and it is not sensitive to increases in the detection rate beyond 1 sec-1.

Figure 14 shows the probability of job loss for a proxy server for different values
of the node failure detection rate for no replication, cold replication and warm
replication. The loss scenario is that queued jobs, in-service jobs and new job
arrivals when the system is down are lost; therefore, no checkpointing is required.
For all cases, there is an initial decrease in the probability of job loss as the node
failure detection rate is increased from 0.1 sec-1 to 1 sec-1 and, for further increases
in the detection rate, there is an increase in the probability of job loss except for the
no replication case where it remains constant. The probability of message loss
increases significantly for values of the detection rate greater than 12 sec-1 due to
the increased overhead associated with the higher detection rate.

We assume that the buffer for job arrivals entering the system is of infinite size
and, therefore, no jobs are lost due to buffer overflow. In Figure 15, we plot the
expected number of job arrivals when the system is in the down state against the
detection rate of node failures for different replication schemes. As expected, this
figure is highest for the no replication case (longest downtime) and lowest for the
warm replication case (shortest downtime). The results, however, are not sensitive
to changes in the node failure detection rate beyond 1 sec-1. Next, in Figure 16, we
show the mean time required to service the jobs accumulated in the arrival queue
(while the system was in a down state) as a function of the node failure detection
rate. The service time for these jobs ranges from 75 seconds for no replication, 40
seconds for cold replication and 2 to 20 seconds for warm replication depending on
the node switchover rate. The point to note is that, when the job arrival rate is high,
saving job arrivals during the recovery interval is not worthwhile in call processing
applications — the call setup delays for no replication and cold replication schemes
would be unacceptable. This implies that checkpointing will not provide any
benefits for the no replication and cold replication schemes.

 Characterizing Session Initiation Protocol (SIP) Network Performance 209

 Fig. 13. Availability of proxy server Fig. 14. Probability of message loss of
 proxy server

 Fig. 15. Arrival of INVITE requests during Fig. 16. Mean time to service jobs in
 down state arrival queue

210 V.K. Gurbani, L.J. Jagadeesan, and V.B. Mendiratta

6 Conclusions and Future Work

We have presented performance and reliability models for SIP networks and analyzed
the behavior of the network under varying arrival rates, service rates, network delays,
and replication schemes and associated failover rates. Key metrics that were analyzed
include (end-to-end) mean response times, (end-to-end) mean number of jobs in the
system, availability, probability of job loss, and mean time to process jobs that arrive
when the system is down. Our analysis indicates three key findings. First, for an
arrival rate of 1 million BHCA our results show the mean response time falls within
an acceptable range, and that beyond a certain point, increases in service rates or
number of servers on a single host do not yield significant improvements in mean
response time. In particular, our results show that for single server hosts and service
rates of 0.5 INVITE ms-1, mean response times are less than 10ms. Furthermore,
service rates greater than 1 ms-1 do not yield significant improvements in mean
response time. Similarly, for multiple server hosts and service rates of 0.3 ms-1,
response times remain acceptable. Second, our results indicate that in steady state
there are very few jobs in the system that are in a setup state. For example, in the
steady state we observe that single server hosts with service rates greater than 0.5
requests per ms, there are no more than 10 jobs in the setup state in a single proxy
server. For chains of single server proxies up to length 6, there are no more than 50
jobs in the setup state across all proxies in a SIP network. Given these results, we
question whether it is necessary to add checkpointing in a SIP network. As noted
earlier, however, if the delay representing the time taken by the user to answer the call
is included in the analysis there will be more jobs in the system in a ringing state. Our
future work will extend the performance analysis to multiple servers on hosts.

Third, our results demonstrate that saving incoming jobs when the system is down
yields acceptable mean response times only under certain replication schemes. For no
replication and cold replication, the mean time to service the INVITE requests
accumulated during the recovery interval will require 40-75 seconds. Given that the
normal lifetime of a SIP transaction is 32 seconds [1], saving job arrivals during the
recovery interval is counter-intuitive. For warm replication, however, the mean time
to service the jobs accumulated during the recovery interval is 2-20 seconds,
depending on the value of the node switchover rate. For this replication strategy, one
can consider saving new jobs that arrive during the recovery interval. However,
since, as discussed above, calls in the setup state likely need not be saved, a
comprehensive checkpointing strategy is not necessary. Our future work will also
extend this aspect of our analysis with multiple servers on hosts.

The reliability model presented results for an assumed set of input parameter
values. The results indicate that, to achieve the level of reliability in SIP networks that
is comparable to PSTN, warm replication is required. In practice, these models can be
used to determine required design targets such as switchover time and error detection
time to achieve a given level of proxy server availability.

Future work will focus on validating the performance and reliability model
parameters and results with lab measurements and field data. Additional future work
includes relaxing assumptions about exponential distributions, including protocol
timers in the model and extending the reliability model to multiple servers.

 Characterizing Session Initiation Protocol (SIP) Network Performance 211

References

[1] J. Rosenberg, et al., "The Session Initiation Protocol (SIP)", IETF RFC 3261, June 2002,
<http://www.ietf.org/rfc/rfc3261.txt>.

[2] J-S. Wu and P-Y Wang, "The performance analysis of SIP-T signaling system in carrier
class VoIP network", Proceedings of the 17th IEEE International Conference on Advanced
Information Networking and Applications (AINA), 2003.

[3] Vemuri and J. Peterson, "Session Initiation Protocol for Telephones (SIP-T): Context and
Architectures", IETF RFC 3372, September 2002, <http://www.ietf.org/rfc/rfc3372.txt>

[4] H. Schulzrinne, et al., "SIPStone - Benchmarking SIP server performance", April 2002,
<http://www.sipstone.org/files/sipstone_0402.pdf>.

[5] S. Garg, et al., “Performance and Reliability Evaluation of Passive Replication Schemes
in Application Level Fault Tolerance,” Proceedings of the 29th Annual International
Symposium on Fault-Tolerant Computing, Madison, WI, June 1999.

[6] J. F. Meyer, "On evaluating the performability of degradable computing systems", IEEE
Transaction on Computers, Volume 29, No. 8, pp. 720-731, August 1980.

[7] T. Russell, "Signaling System #7", (Second Edition), McGraw-Hill Publishing Company,
1995.

[8] G. Camarillo, "SIP Demysitified", McGraw-Hill Publishing Company, 2001.
[9] J. Davidson, et al., "Voice over IP fundamentals", Cisco Press, 2000.

[10] Zhu, "Analysis of SIP in UMTS IP Multimedia Subsystem", MSc. Thesis, Computer
Engineering, North Carolina State University, 2003.

[11] R. Jain, "The Art of Computer Systems Performance Analysis", John Wiley and Sons,
Inc., 1991.

[12] F. Lipson, “Verification of Service Level Agreements with Markov Reward Models,”
South African Telecommunications Networks and Applications Conference, September
2003.

[13] P. Barford and J. Sommers, “Comparing Probe- and Router-Based Packet-Loss
Measurements,” IEEE Internet Computing, Vol. 8, No. 5, pp. 50-56, September-October
2004.

Author Index

Bakken, David E. 149
Balogh, András 84
Biely, Martin 164
Bondavalli, Andrea 180

Dionysiou, Ioanna 149
Drugan, Ovidiu V. 149

Fetzer, Christof 123
Frincke, Deborah A. 149

Giandomenico, Felicita Di 180
Gurbani, Vijay K. 196

Hauser, Carl H. 149
Hu, Wei 39

Jagadeesan, Lalita J. 196
Jim, Trevor 123
Jokiaho, Timo 25

Kamalvanshi, Ajay 25
Kopetz, Hermann 1
Kuliamin, Victor V. 68

Lann, Gérard Le 164
Laures, Guido 102
Lee, Insup 137
Lollini, Paolo 180

Mendiratta, Veena B. 196
Milanovic, Nikola 52
Moorsel, Aad van 99

Pakoulin, Nickolay V. 68
Pataricza, András 84
Petrenko, Alexander K. 68
Plagemann, Thomas P. 149

Schmid, Ulrich 164
Shin, Insik 137
Spencer, Bob 15

Trivedi, Kishor S. 107

Varró, Dániel 84

Wang, Dazhi 107

	Frontmatter
	TTA Supported Service Availability
	The Value of Conformance Testing and a Look at the SAF Test Project
	Building Highly Available Application Using SA Forum Cluster: A Case Study of GGSN Application
	Using Logical Data Protection and Recovery to Improve Data Availability
	Contract-Based Web Service Composition Framework with Correctness Guarantees
	Practical Approach to Specification and Conformance Testing of Distributed Network Applications
	Model-Based Optimization of Enterprise Application and Service Deployment
	On Best-Effort and Dependability, Service-Orientation and Panacea
	Are Service-Oriented Architectures the Panacea for a High-Availability Challenge?
	Modeling User-Perceived Service Availability
	Dependable Distributed Computing Using Free Databases
	A Compositional Framework for Real-Time Embedded Systems
	On the Importance of Composability of Ad Hoc Mobile Middleware and Trust Management
	Proof-Based System Engineering Using a Virtual System Model
	Evaluation of the Impact of Congestion on Service Availability in GPRS Infrastructures
	Characterizing Session Initiation Protocol (SIP) Network Performance and Reliability
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

